

APLICAÇÃO DO PROCESSO FOTOELETROQUÍMICO PARA TRATAMENTO DE ÁGUAS E EFLUENTES

Prof. Dr. Peterson B. Moraes

Laboratório de Tratamento de Efluentes

Departamento de Tecnologia em Saneamento Ambiental

Centro Superior de Educação Tecnológica

MÉTODOS DE CONTROLE DA POLUIÇÃO DE ÁGUAS

PROCESSOS FÍSICOS: são destinados à remoção de sólidos grosseiros, sedimentáveis, flutuantes e umidade de lodo; homogeneização e equalização de efluentes; diluição.

- Grades de limpeza manual ou mecanizada
- Peneiras estáticas, vibratórias ou rotativas
- Caixas de areia simples ou aeradas
- Tanques de retenção de materiais flutuantes
- Decantadores
- Flotadores a ar dissolvido
- Leitos de secagem de lodo
- Filtros prensa e a vácuo
- Centrifugas
- Filtros de areia
- Adsorção em carvão ativado

MÉTODOS DE CONTROLE DA POLUIÇÃO DE ÁGUAS

PROCESSOS QUÍMICOS: utilizam produtos químicos para aumentar a eficiência de remoção de substâncias, modificar sua estrutura ou característica químicas.

- Coagulação-floculação
- Precipitação química
- Oxidação
- Cloração
- Neutralização ou correção de pH

PROCESSOS BIOLÓGICOS: dependem da ação de microrganismos aeróbios ou anaeróbios. Procuram reproduzir os fenômenos biológicos observados na natureza.

- Lodos ativados e suas variações
- Filtros biológicos aeróbios ou anaeróbios
- Lagoas aeradas
- Lagoas de estabilização facultativas e anaeróbias
- Digestores anaeróbios

PRINCIPAIS OXIDANTES E SISTEMAS

- Cloro (Cl₂)
- Dióxido de cloro (CIO₂)
- Ozônio (O₃)
- Permanganato de potássio (KMnO₄)
- Peróxido de hidrogênio (H₂O₂)
- SO₂/ar
- Ferrato (FeO₄-2)
- Oxidação em ar úmico
- Oxidação supercrítica com água

PRINCIPAIS REDUTORES

- Dióxido sulfúrico (SO₂)
- Peróxido de hidrogênio (H₂O₂)
- Ferro na forma ferrosa (Fe⁺²)
- Sulfito (Na₂SO₃), bissulfito (NaHSO₃), metabissulfito (Na₂S₂O₅) e hidrosulfeto de sódio (NaHS)
- Sulfeto de hidrogênio (H₂SO₃)
- Sulfato ferroso (Fe₂SO₄)
- Hidrazina (N₂H₂)

Destruição de poluentes no processo biológico

Partículas solúveis – assimiladas pelas endoenzimas

Partículas em suspensão – quebradas por exoenzimas para posterior assimilação pelas endoenzimas (hidrólise):

proteínas \rightarrow aminoácidos carboidratos \rightarrow áçúcares sólúveis lipídeos \rightarrow ácidos graxos de cadeia longa e glicerina

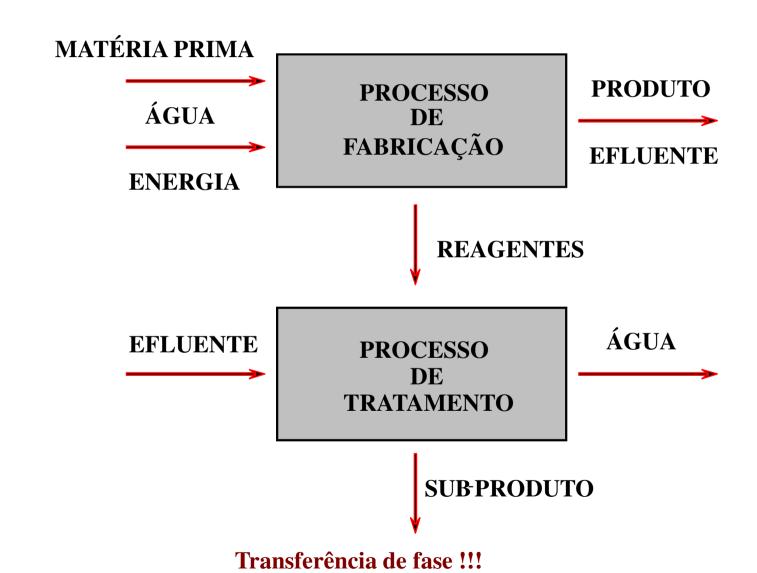
Organismos atuantes na biodegradação de m.o.

Protozoários: Amoeba, Paramaecium, Colpoda, Epistylis, Vorticella, etc.

Fungos: Fusarium aquedutum, Geotrichum candidum, Pullularia pullulans, Ascioides rubescens, etc.

Bactérias: Sphaerotilus, Pseudomonas, Beggiatoa, Actinomyces, etc. Metanogênicas: Methanobacterium formicicum, Methanococcus mazei, Methanobacterium suboxidans, Methanosarcina methanica, etc.

Artrópódos: Daphnia, Chironomus, Tubifera, etc.


Vermes aquáticos: Tubifex, Lymnodrilus, etc.

Microinvertebrados: Formica cinerea, etc.

Insetos: Colêmbolos (família *Entomobrydae*)

Ciclo de produção com tratamento convencional de efluentes

Potenciais de oxi-redução

Redox Reaction	Eo (NHE)		
	volt, 25°C		
$F_2 + 2e = 2F$	2.87		
$OH + H^+ + e = H_2O$	2.33		
$O_3 + 2H^+ 2e = O_2 + H_2O$	2.07		
$H_2O_2 + 2H^+ + 2e = H_3O_2 +$	1.76		
$MnO_4 - + 4H^+ + 3e = MnO_2 + 2H_2O$	1.68		
$HClO_2 + 3H^+ 4e = Cl^- + 2H_2O$	1.57		
$MnO_{4-} + 8H_{+} + 5e = Mn^{2+} + 4H_{2}O$	1.49		
$HOCI + H^{+} + 2e = CI^{-} + H_{2}O$. 1.49		
$Cl_2 + 2e = 2Cl$	1.36		
$HBrO + H^{+} + 2e = Br^{-} + H_{2}O$	1.33		
$O_3 + H_2O + 2e = O_2 + 2OH^*$	1.24		
$ClO_2(g) + e = ClO_2$	1.15		
$P_2 + 2e = 2Br^-$	1.07		
$HO + H^{+} + 2e = I^{-} + H_{2}O$	0.99		
$ClO_2(aq) + e = ClO_2$	0.95		
$ClO^{-} + 2H_{2}O + 2e = Cl^{-} + 2OH^{-}$	0.90		
$H_2O_2 + 2H^+ + 2e = 2H_2O$	0.87		
$ClO^{2-} + 2H_2O + 4c = Cl^- + 4OH^-$	0.78		
$BrO^{-} + H_{2}O + 2e = Br^{-} + 4OH^{-}$	0.70		
$l_2 + 2e = 21^-$	0.54		
$1_3 + 3e = 31$	0.53		
$10^{\circ} + H_2O + 2e = 1^{\circ} + 2OH^{\circ}$	0.49		

Porque os processos foto e eletroquímico?

Histórico:

- > 1888 Leeds: tratamento eletrolítico de esgoto;
- > 1887 Downes & Blunt; Roux: exposição à luz solar de bactérias causadoras da peste bulbônica e difteria;
- > 1903 Barnard & Morgan: efeitos bactericidas;
- > 1910 Primeiro uso conhecido da radiação ultravioleta para desinfecção de água na França;
- ➤ 1929 Relação entre a desinfecção e absorção de luz UV pelo ácido nucléico;
- > 1930 desenvolvimento de lâmpadas fluorescentes e produção de lâmpadas germicidas tubulares.

A constatação de que baixas doses de radiação UV poderiam inativar Giárdia e Criptosporídeos ampliou o uso desta tecnologia

Porque os processos foto e eletroquímico?

Já utilizados em diversos segmentos industriais: galvanoplastia, biomedicina, aeronáutica, petroquímica, papel e celulose, <u>ambiental</u>.

Processo eletrolítico: bom para remover orgânicos de alta massa molar, cor, odor, desinfecção; durabilidade, flexível.

Processo fotolítico: desinfecção eficiente, baixo custo, processo simples, sem adição de reagentes, etc.

Vantagens e desvantagens do processo biológico

Limitações

- grandes flutuações de carga orgânica, pH, temperatura
- não remove cor
- geram lodo
- presença de compostos refratários, <u>persistentes</u> e/ou substâncias tóxicas e inibidoras do processo de biodecomposição, soluções salinas (plasmólise)
- pequena área disponível
- alto custo de implantação
- longos tempos de retenção do efluente

Pontos favoráveis

- bom para remover orgânicos de baixa massa molar
- baixo custo de operação, já difundido
- pouca manutenção

Vantagens e desvantagens do processo eletrolítico

Limitações

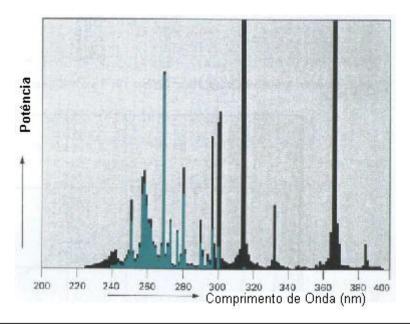
- alto custo de operação
- deve-se ter domínio sobre o processo se o efluente conter alto teor de cloro no caso do tratamento de c.o.

Pontos favoráveis

- baixo custo de implantação
- ocupa pouco espaço
- seletividade
- compatibilidade ambiental (elétron, pode não gerar lodo)
- facilidade de automação
- versatilidade, estabilidade
- eficácia (remoção de cor, odor, turbidez, metais, microrganismos, rapidez)

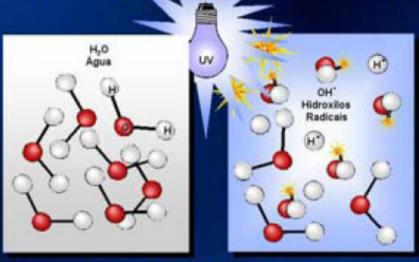
Vantagens e desvantagens do processo fotoquímico

Limitações


- presença de sólidos em suspensão e/ou turbidez
- dose mínima necessária para desinfecção
- não produz efeito <u>residual</u> (<u>fotoreativação e reação no</u> escuro)

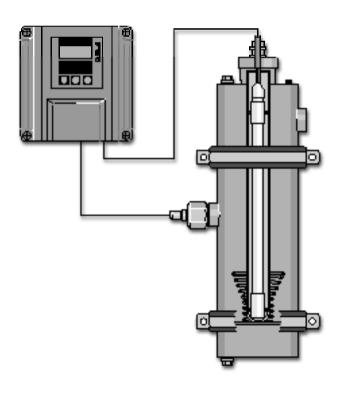
Pontos favoráveis

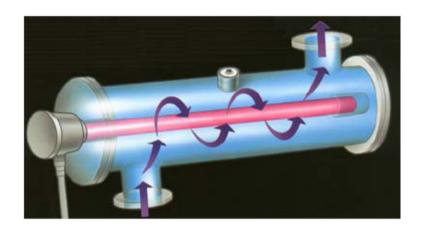
- baixo custo de implantação
- ocupa pouco espaço
- compatibilidade ambiental (fóton, não gera: THM, cloroaminas ou lodo)
- facilidade de operação e automação
- eficácia (remoção de cor, odor, microrganismos, rapidez)
- não necessita da adição de reagentes (fotólise)

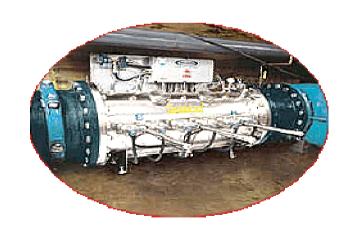

Comparação entre diferentes métodos

Tipo	Efecto bactericida	Efecto remanente
O ₃	+++	0
Cl_2	++	+
ClO_2	++	+
Cloraminas	+	++
UV	++	0
Colorantes/luz visible	+	En estudio
Irradiación γ	+++	+++
UV/TiO ₂	Esterilización	En estudio

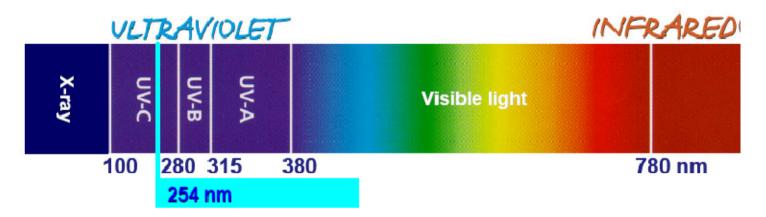
Tabla I. Efecto bactericida y remanente de algunos de los tratamientos comunes de aguas y aire.


Gerando o Radical Hidroxila •OH em Água com Energia Ultravioleta




Processo Primário para Fotólise: $H_2O + hv \longrightarrow H(^2S_{1/2}) + OH(^2H)$

Reator ultravioleta

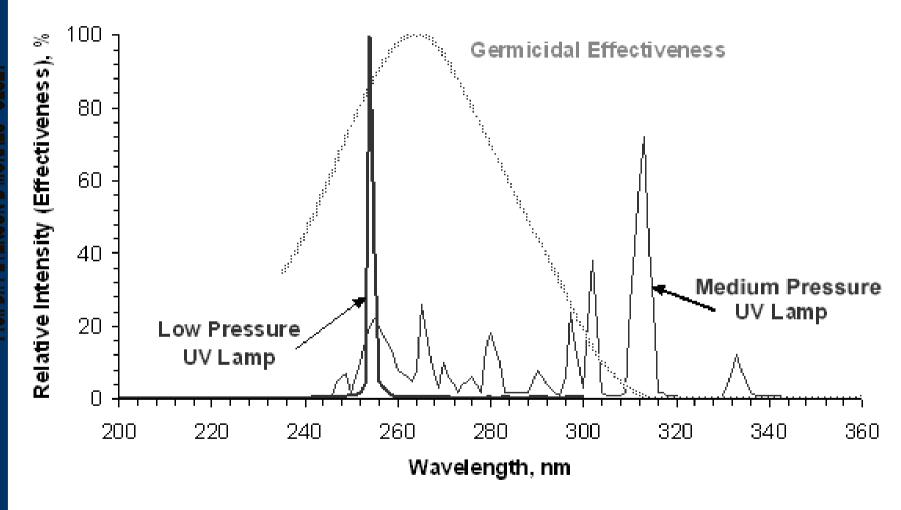

Qual lâmpada utilizar?

Tipos:

- Baixa pressão e baixa intensidade: monocromáticas (254 nm: 30 a 50% da pot nominal)
- Baixa pressão e alta intensidade: 2 a 4x mais radiação em 254 nm que a anterior
- Média e alta pressão e alta intensidade: policromáticas (180 a 1370 nm) e 7 a 15% em 254 nm.
 UV 50 a 100x superior que as de baixa pressão e baixa intensidade.

Electromagnetic spectrum

UV-A: UV de onda longa ou "luz negra", que é a maior parte dos raios UV emitidos pelo sol. É responsável por grande parte do efeito de bronzeamento da pele e, em termos gerais, não é prejudicial e é usado na tratamento médico de certas doenças da pele.


UV-B: é uma parte pequena, porém, perigosa, da luz solar. A maior parte é absorvida pela camada de ozônio. A exposição prolongada resulta em alguns tipos de câncer da pele, envelhecimento da mesma e catarata nos olhos.

UV-C: UV de onda curta, não presente na luz solar. Inclui UV germicida (253.7nm), usado na desinfecção. A superexposição causa vermelhidão da pele e irritação dos olhos, ambos transitórios, mas acredita-se que não cause câncer da pele, nem catarata nos olhos.

Tolerância: Para UV germicida de 254 nm, o limite de exposição é menor que 0,2 microwatts/cm² num período de 8 horas.

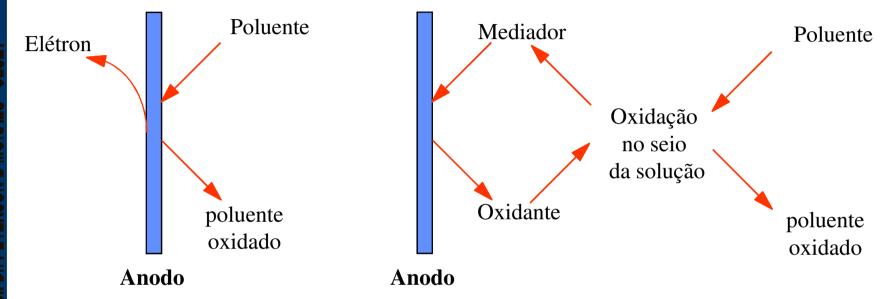
Espectro de emissão de lâmpadas UV

Níveis de energia ultravioleta a 254 nm necessário para exterminar 99,9% dos microorganismos abaixo (μW-s/cm²)

BACTÉRIAS

BAGTETHAG	
Bacillus anthracis	8.700
Bacillus subtilis (vegetative)	11.000
Clostridium tetani	22.000
Corynebacterium diphtheriae	6,500
Escherichia coli	7.000
Legionella pneumophila	3.800
Leptospira interrogans (infectious Jaundice)	6.000
Mycobacterium tuberculosis	10.000
Pseudomonas aeruginosa (environmental strain)	10.500
Salmonella enteritidis	7.600
Salmonella typhosa (Typhoid Fever)	6.000
Sarcinia lutea	26.400
Shigella dysenteriae (Dysentery)	4.200
Staphylococcus aureus	7.000
Streptococcus faecalis	10.000
Streptococcus hemolyticus	5.500
Viridans streptococci	3.800
Vibrio cholerae	6.500

Exhibit 2.5: UV Dose Requirements for Inactivation of *Cryptosporidium*, *Giardia*, and Viruses During Validation Testing

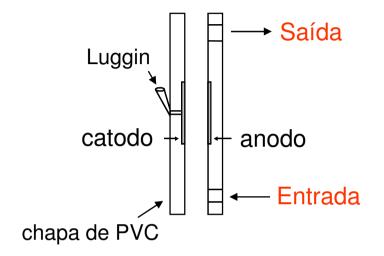

	Log Inactivation							
	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Cryptosporidium	1.6	2.5	3.9	5.8	8.5	11.7	-	-
Giardia	1.5	2.1	3.0	5.2	7.7	10.8	-	-
Virus	39.4	58.1	79.1	100.1	120.7	142.6	163.1	186.0

Note: All values presented in mJ / cm²

Esquema geral de oxidação eletrolítica

eletrólise

Oxidação direta


Oxidação indireta

Oxidantes: Cl₂, OCl⁻, ClO₂, H₂O₂, O₂, O₃, •OH, etc.

Sistema foto-eletroquímico para tratamento de água/efluentes

Anodo: Ti revestido com 70%TiO₂/30%RuO₂ Catodo: aço-inoxidável 26

Resultados para suspensão contendo E. coli (~106 UFC/ML)

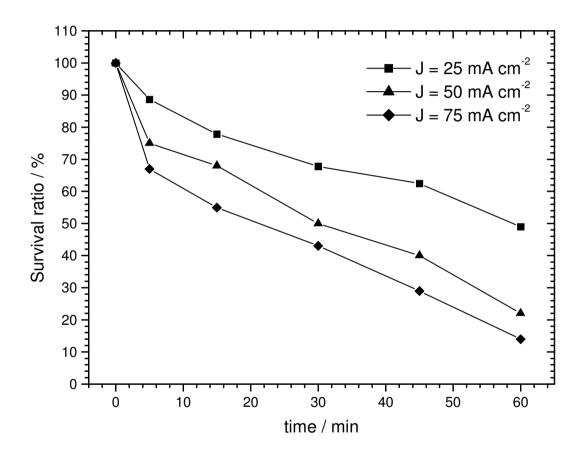
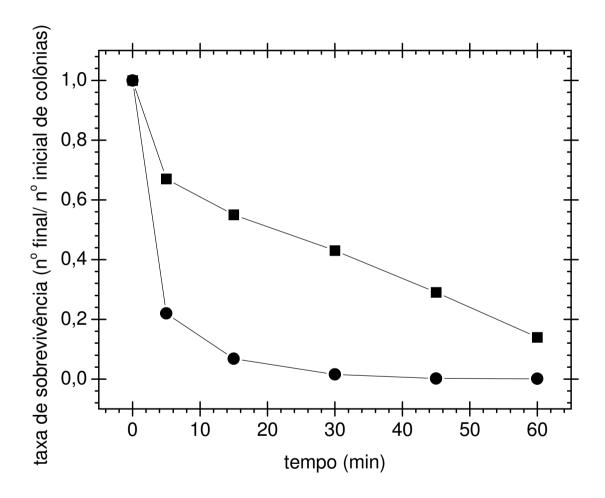
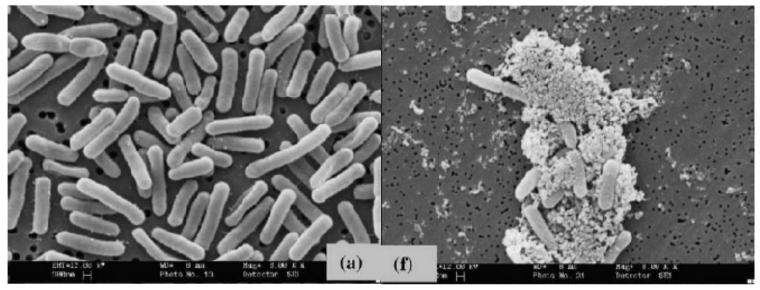
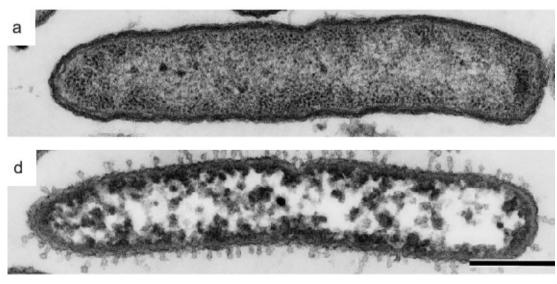



Figura: Sobrevivência da *E. coli* em função do tempo de eletrólise. Vazão 500 L h⁻¹.


Resultados para suspensão contendo ~106 UFC/mL


Taxa de sobrevivência da *E. coli* () e *S. aureus* (•) após o tratamento eletrolítico em função do tempo de eletrólise com 75 mA cm⁻² em 500 L h⁻¹

Micrografias de microrganismos

E. coli antes e após 2 min de eletrólise a 25 mA cm⁻²

P. aeruginosa antes de eletrólise e após eletrólise

Mecanismos nos microrganismos

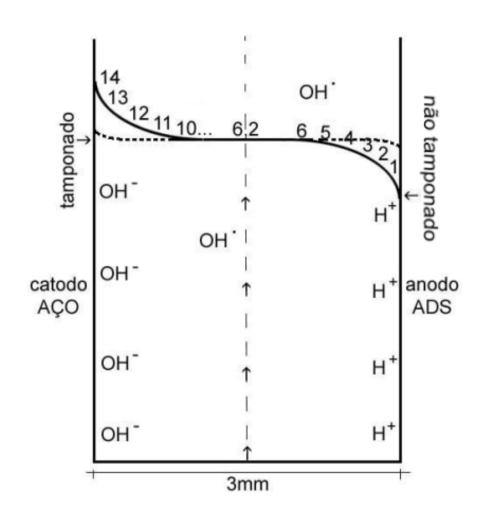
Inibição celular: Grupo VIII-B, complexos metálicos

Oxidação e/ou dimerização da coenzima A

Troca de cargas

Inativação da enzima citoplasmática

Eletroporação (aumento da permeabilidade e diminuição da seletividade)


Ação de espécies oxidantes: O₂, O₃, Cl⁻, HOCl, OCl⁻, OH[•], H₂O₂, etc.

No caso do eletrodo DSA em *E. coli*:

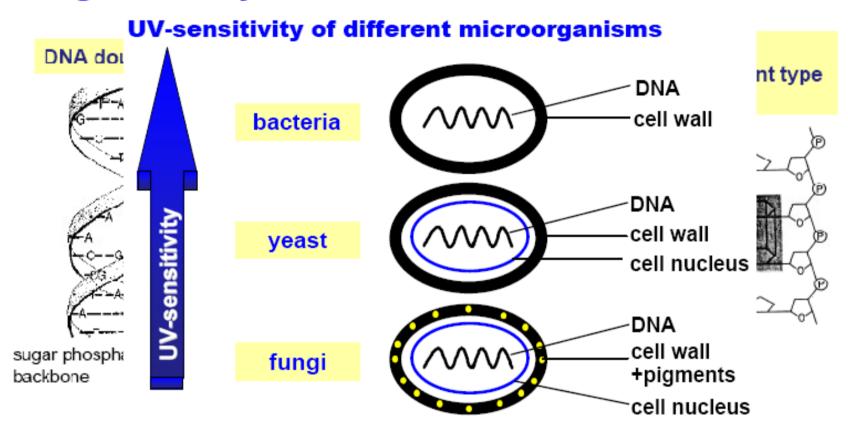
Gradiente de pH próximo aos eletrodos e na formação de radicais hidroxila

Mecanismos nos microrganismos

Em trabalhos usando eletrodo de titânio para desinfecção de águas contendo microrganismos (Patermarakis e Fountoukidis, 1990) foram propostas as seguintes reações para explicar a desinfecção proporcionada pelo tratamento eletrolítico:

2 OH⁻ - 2e⁻
$$\rightarrow$$
 H₂O + [O]
2 [O] \rightarrow O₂

Devido ao baixo tempo de vida do radical oxigênio, acredita-se que sua ação ocorra somente nas proximidades da superfície do eletrodo. Também no anodo, ozônio pode ser gerado segundo as reações:


$$H_3O^+ + OH^- \rightarrow O_3 + H_2O$$

 $H_3O^+ + OH^- \rightarrow 2 HO_2$
 $HO^- + 2O_2 \rightarrow O_3 + HO_2$

No catodo:

$$O_2 + H_2O + 2e^- \rightarrow HO_2^- + OH^- + OH_2^- \rightarrow OH^- + OH_2^- + 2e^- + H_2O \rightarrow 3 OH^-$$

Damage of DNA by UVC

Microorganism	Size of cell	Length of DNA	Number of base pairs
Escherichiacoli (Bacteria)	1µm	1360 µm	4 millions

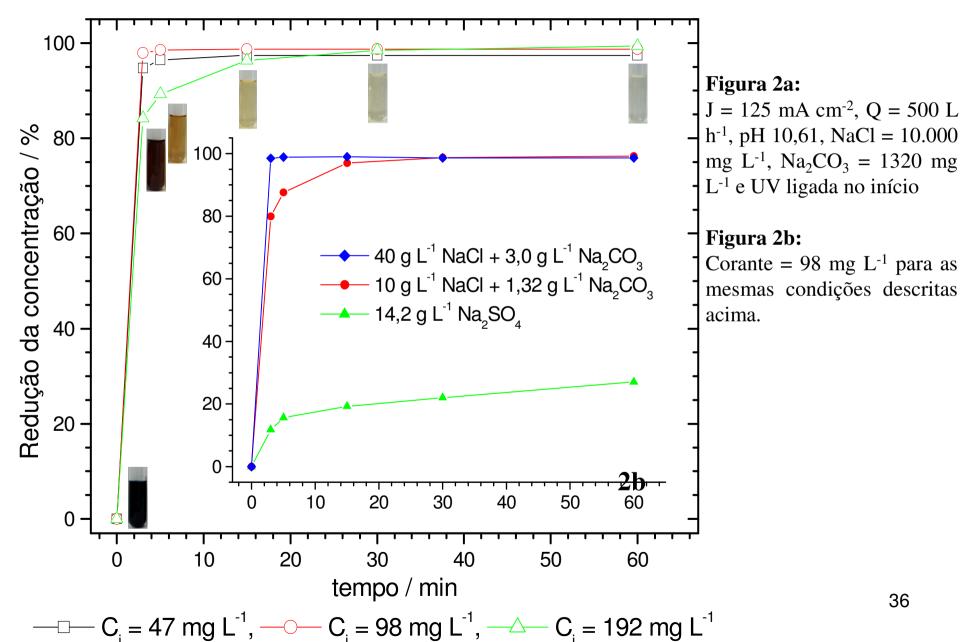
Fotorreativação e recuperação no escuro

Fotorreativação: recuperação fotoenzimática que monomeriza *in situ* os dímeros de piridina pela ação de enzima (300 – 500 nm).

Recuperação no escuro: substituição dos nucleotídeos lesados e de uma sequência de nucleotídeos adjacentes, com posterior ressíntese da sequência original (recuperação por excisão-ressíntese).

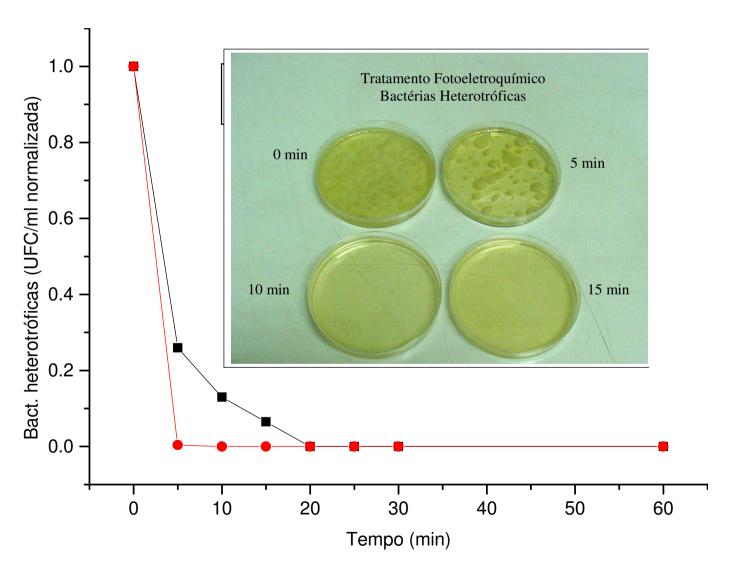
Maiores doses de radiação → menor possibilidade de fotorreativação (não há tempo de reverter as dimerizações antes que inicie a duplicação).

Corpos d'água rasos e com baixa turbidez são mais susceptíveis à fotorreativação. Foi demonstrado que muitos microorganismos são capazes de se auto-regenerar após exposição a lâmpadas de baixa pressão, sobretudo se são posteriormente expostos à luz solar – que é o ocorre em muitas ETEs.

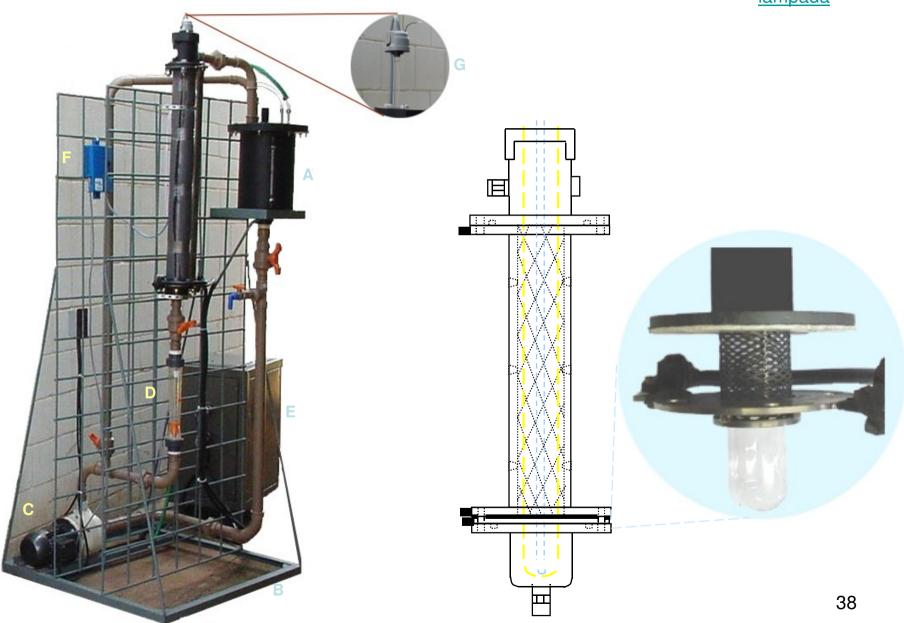


Mecanismo de reparação de danos dos microrganismos

- Alguns estudos sobre o mecanismo de reativação dos microrganismos mostram que:
 - Para Giárdia, após exposição à doses típicas do processo de desinfecção, não ocorre reparação;
 - Criptosporídeos também não recuperam a capacidade infectiva após a inativação por radiação UV;
 - O RNA dos vírus não dispõem das enzimas necessárias para possibilitar a sua reparação e dependem do hospedeiro para este processo;
 - As bactérias podem ser reativadas após a exposição à radiação ultravioleta.

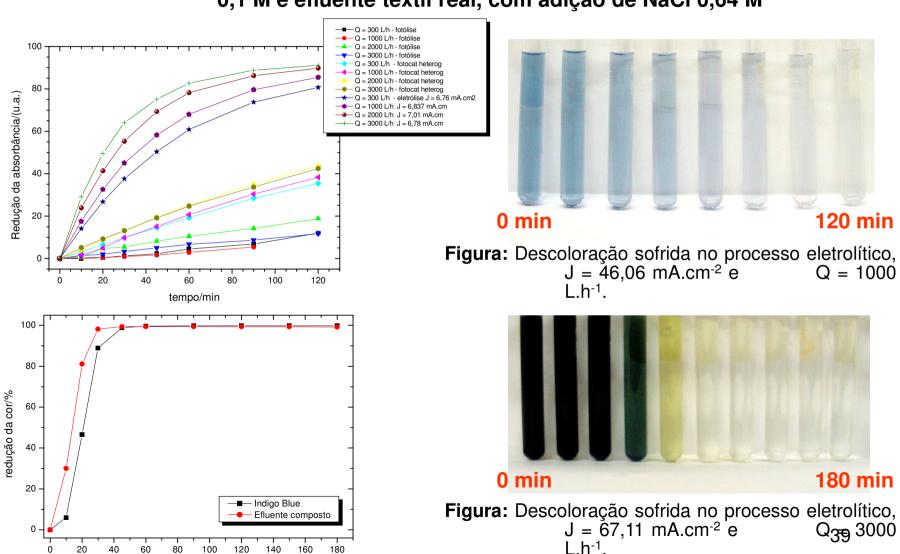

Resultados obtidos para o corante Remazol azul escuro HR

Resultados no tratamento de esgoto hospitalar


I= 25 mA.cm⁻², 1000 L/h, V= 20 L

Sistema fotoeletroquímico construído

<u>lâmpada</u>



tempo de eletrólise/min

Resultados obtidos

Testes preliminares: solução do corante Preto Remazol 15 ppm, com adição de Na₂SO₄ 0,1 M e efluente têxtil real, com adição de NaCl 0,64 M

Resultados no tratamento de chorume

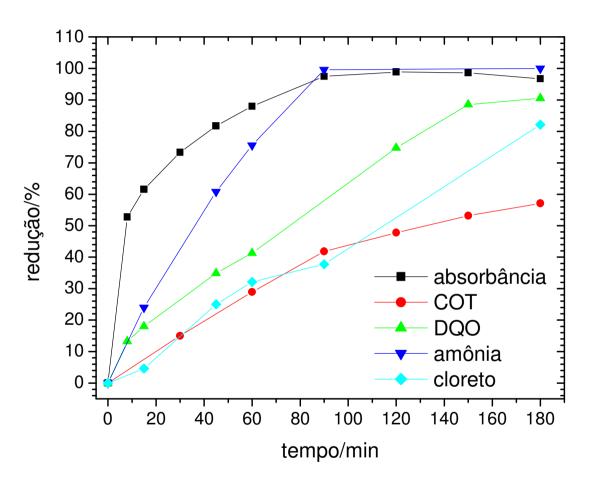
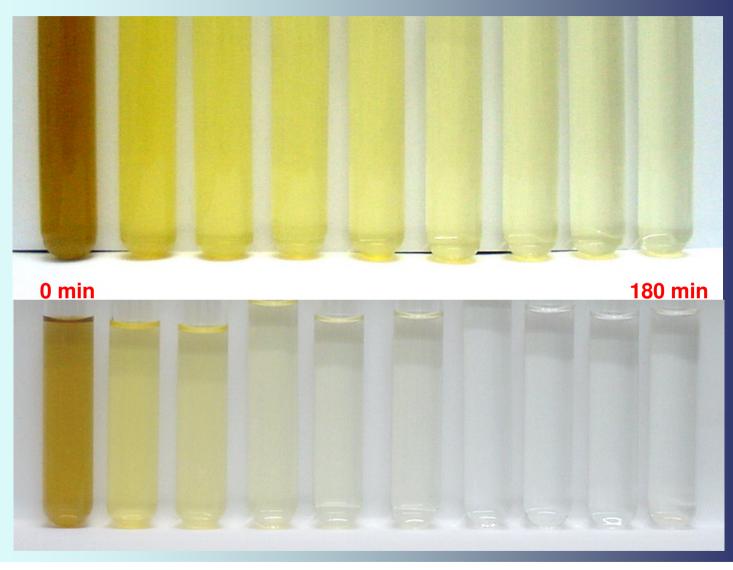
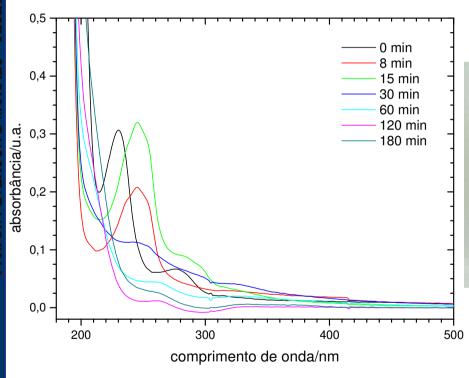



Gráfico dos parâmetros medidos em função do tempo de eletrólise com J=116,0~mA cm⁻², $V_m=10,21~V$ a 2000 L h^{-1} .

Resultados no tratamento de chorume

Figura 6: Foto da descoloração sofrida pelo chorume após tratamento eletrolítico, com J = 116 mA.cm⁻². Q = 2000 L.h⁻¹.

Compostos presentes no efluente da indústria química

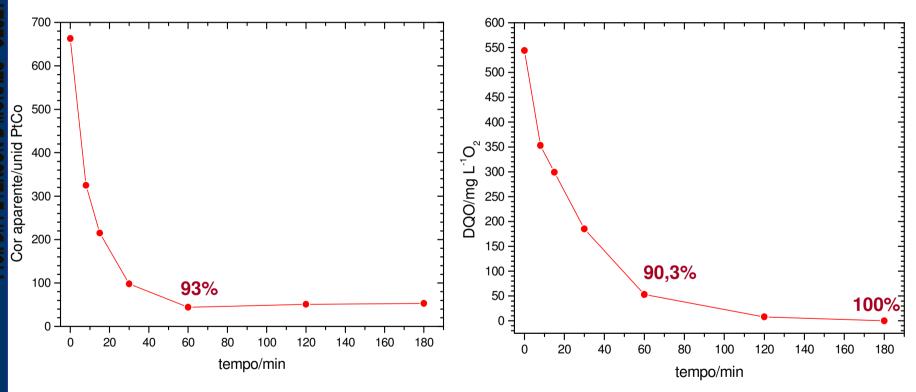

Nome comercial	Fórmula	Classificação	Dado ambiental*
Flexzone 3	CH ₃ CH-NH-CH ₃ CH ₃	p fenileno- diamina	Muito tóxico para organismos aquáticos, podendo causar efeitos de longo prazo em ambiente aquático
Flexzone 7	ÇH ₃ ÇH ₃ — —	p fenileno-	Idem ao
	H ₃ C-CH-CH ₂ -CH-NH-\(\)-NH-\(\)	diamina	Flexzone 3
Naugard Q	CH₃	amina secundária	
	CH ₃	Securidaria	Em estudo
Aminox	não disponívol	amina secundária	Em estudo
	não disponível		Liii CStado


^{*} Fonte: IPCS Inchem (International Program on Chemical Safety)

Resultados no efluente da indústria química

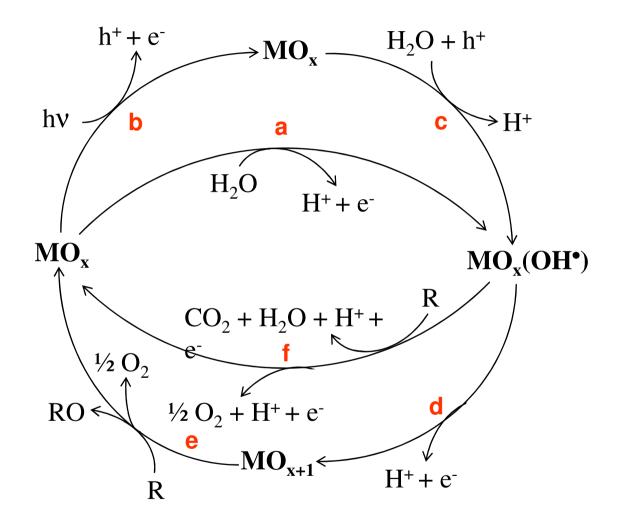
2 – Efluente entrada da lagoa

dados



Resultados no tratamento do efluente da indústria química

1 – Efluente saída da lagoa


dados

 $Q = 3000 L h^{-1}$

Mecanismos do processo eletroquímico

Mecanismo de formação dos radicais hidroxila e suas rotas de oxidação

Parâmetros a serem observados

ASPECTOS SOCIO-ECONÔMICOS: renda, educação, crescimento populacional, hábitos, consumo de água, industrialização, etc.

ASPECTOS FÍSICOS DO LOCAL: topografia, tipo de solo, lençol freático, clima, área disponível para a ETE, energia, insumos, etc.

ASPECTOS AMBIENTAIS: exigências do corpo receptor (padrões de lançamento), vazão e variações, proximidade entre a ETE e a população, locais p/ disposição do lodo ou sistemas de reaproveitamento, impactos ambientais nas etapas de construção e operação.

ASPECTOS LEGAIS: legislação aplicável.

Federal: CONAMA 357/05

Estadual: Artigos 18, 19-A e 21 (Decretos 8468/76 e 15425/80),

Resolução SMA-3, Portaria MS 518/04.

Municipal

Parâmetros a serem adotados para a seleção do processo de tratamento

- 1) concentração de poluentes
- 2) fluxo, vazão ou volume
- 3) grau de mineralização necessária, presença de inibidores ou consumidores de radicais
- O tratamento escolhido deve ser otimizado para tratar um caso em particular, mas com eficiência para variações no fluxo

Eficiência e escolha do tipo de tratamento (efluentes industriais)

Processos físico-químicos: remoção de poluentes inorgânicos, metais pesados, óleos e graxas, cor, SS, SD e compostos orgânicos recalcitrantes

Processos biológicos: remoção de SV (dissolvidos e suspensos), compostos biodegradáveis

Processos avançados: remoção de SFD

DQO < 2.DBO → possível m.o. biodegradável: proc. biológicos

DQO >> 2.DBO → possível m.o. não-biodegradável: proc. físico-químicos, considerando-se a toxicidade.

Eficiência e escolha do tipo de tratamento (efluentes industriais)

Monitoramento de: vazão, pH, temperatura, DBO, DQO, ST, SS, metais, poluentes específicos, etc.

Para novas instalações:

- caracterização de efluentes de indústrias similares;
- consulta a banco de dados;
- simulação do processo industrial em nível de bancada;
- estudos específicos (distritos industrias).

Contato e informações

