Aplicação da síntese de fischer- tropsch
a review
DOI:
https://doi.org/10.14295/holos.v23i2.12496Palavras-chave:
Fischer-Tropsch, SBA-15, Cinza da casca de arroz, TEOS, Cobalto, Rutênio, Reator leito de lama.Resumo
Este trabalho teve como objetivo, desenvolver peneiras moleculares utilizando fontes de sílica alternativa (cinza da casca de arroz), utilizá-las como suportes para catalisadores de Cobalto destinados à síntese de FischerTropsch, e também, investigar o efeito da introdução de rutênio como promotor na reação acima mencionada. A reação de Fischer-Tropsch foi conduzida em reator leito de lama durante 6 horas de reação a 513K e pressão de 20 atm, utilizando uma relação molar H2/CO = 2. As análises de adsorção física de N2 das peneiras moleculares SBA-15 (CCA), mostram isotermas com perfil do tipo IV e histerese H1, características de materiais mesoporosos. As áreas superficiais específicas dos catalisadores diminuem e o volume de poro varia, devido ao bloqueio parcial dos poros pelo cobalto e pelo promotor rutênio, mas a estrutura da peneira molecular SBA-15 não é alterada. Os perfis de RTP dos catalisadores das séries Co/SBA-15 e Ru/Co/SBA-15 permitiram verificar a presença de picos distintos que pode ser causado pela redução dos óxidos de cobalto. A MET mostrou espécies de cobalto na forma esférica com tamanho de 20 nm, e após a co-impregnação com rutênio, houve uma melhor dispersão dessas espécies de cobalto. Os resultados obtidos a partir da síntese de FischerTropsch pelos catalisadores, apresentaram altas seletividades a hidrocarbonetos C5+ de alto valor agregado, bem como, verificou-se que a co-impregnação do promotor rutênio no catalisador Co/SBA-15, favoreceu o aumento da seletividade para hidrocarbonetos C5+ e diminuiu a seletividade para metano, com destaque para o desempenho do catalisador 0,5%Ru/SBA-15 preparado com as cinzas da casca de arroz, com rendimento de 88,2%.
Referências
CAI, Q.; LI, J. Catalytic properties of the Ru promoted Co/SBA-15 catalysts forFischer–Tropsch synthesis. Catalysis Communications, v. 9, p. 2003- 2006, 2008. https://doi.org/10.1016/j.catcom.2008.03.035 DOI: https://doi.org/10.1016/j.catcom.2008.03.035
CHEN, W.; LIN, Y.; DAÍ, Y.; NA, Y.; SUN, Y. Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts. Catalysis Today, v.311, p. 8-22, 2018. https://doi.org/10.1016/j.cattod.2017.09.019 DOI: https://doi.org/10.1016/j.cattod.2017.09.019
CHEN, G.; GUO, C.; HUANG, Z.; YUAN, G. Synthesis of ethanol from syngas over iron-promoted Rh immobilized on modified SBA-15 molecular sieve: Effect of iron loading. Chemical Engineering Research and Design, v. 89 p 249-253, 2011. https://doi.org/10.1016/j.cherd.2010.07.014 DOI: https://doi.org/10.1016/j.cherd.2010.07.014
FURTADO, J. L. B.; CARVALHO, A.; VIEIRA, R. Carbon nanofibers as macroscopic catalyst support for Fischer-Tropsch synthesis. Advanced Chemistry Letters, v. 1, p. 317-320, 2013. https://doi.org/10.1166/acl.2013.1035 DOI: https://doi.org/10.1166/acl.2013.1035
GHAMPSON, I. T.; NEWMAN, C.; KONK, L.; PIER, E.; HURLEY, K. D.; POLLOCK, R. A.; WALSH, B. R.; GOUNDIE, B.; WRIGHT, J.; WHEELER, M. C.; MEULENBERG, R. W.; DESISTO, W. J.; FREDERICK, B. G.; AUSTIN, R. N. Effects of pore diameter on particle size, phase, and turnover frequency in mesoporous silica supported cobalt Fischer-Tropsch catalysts. Applied Catalysis A: General, v. 388, p. 57-67, 2010. https://doi.org/10.1016/j.apcata.2010.08.028 DOI: https://doi.org/10.1016/j.apcata.2010.08.028
GONZALEZ, O.; PEREZ, H.; NAVARRO, P.; ALMEIDA, L.C.; PACHECO, J.G.; MONTES, M. Use of different mesostructured materials based on silica as cobalt supports for the Fischer–Tropsch synthesis. Catalysis Today, v.148, p.140-147, 2009. https://doi.org/10.1016/j.cattod.2009.03.030
GAVRILOVIC, L.; BRANDIN, J.; HOLMEN, A.; VENVIK, H.; BLEKKAN, E. Fischer-Tropsch synthesis Investigation of the deactivation of a Co catalyst by exposure to aerosol particles of potassium salt. Applied Catalysis B: Environmental, v. 230, p. 203- 209, 2018. https://doi.org/10.1016/j.apcatb.2018.02.048 DOI: https://doi.org/10.1016/j.apcatb.2018.02.048
JIANG. Z.; ZHAO, Y.; HUANG, C.; SONG, Y.; LIU, Z. Metal-support interactions regulated via carbon coating A case study of Co/SiO2 for Fischer-Tropsch synthesis. Fuel, v. 226, p. 213-220, 2018. https://doi.org/10.1016/j.fuel.2018.03.195 DOI: https://doi.org/10.1016/j.fuel.2018.03.195
LLIUTA, I.; LARACHI, F. Fischer-Tropsch synthesis in vertical, inclined and oscillating trickle-bed reactors for offshore floating applications. Chemical Engineering Science, v. 177, p. 509-522, 2018. https://doi.org/10.1016/j.ces.2017.12.012 DOI: https://doi.org/10.1016/j.ces.2017.12.012
LOY et al., The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production. Energy Conversion and Management. https://doi.org/10.1016/j.cattod.2009.03.030 DOI: https://doi.org/10.1016/j.cattod.2009.03.030
MARTINEZ, A.; LÓPEZ, C.; MÁRQUEZ, F.; DÍAZ, I. Fischer-Tropsch Synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis, v.220, p.486-499, 2003. https://doi.org/10.1016/S0021-9517(03)00289-6 DOI: https://doi.org/10.1016/S0021-9517(03)00289-6
MANGALOĞLU, D. U.; BARANAK, M.; ATAC, O.; ATAKUL, H. J. Effect of the promoter presence in catalysts on the compositions of Fischer–Tropsch synthesis products. Journal of Industrial and Engineering Chemistry, v. 66, p. 298-310, 2018. https://doi.org/10.1016/j.jiec.2018.05.044 DOI: https://doi.org/10.1016/j.jiec.2018.05.044
MENDES, F M T; PEREZ, C A C; NORONHA, F B; SOUZA, C D D; CESAR, D V; FREUND, H J; SCHMAL, M. Fischer−Tropsch Synthesis on Anchored Co/Nb2O5/Al2O3 Catalysts: The Nature of the Surface and the Effect on Chain Growth. Journal of Physical Chemistry, v.110, p. 9155-9163, 2006. http://dx.doi.org/10.1021/jp060175g DOI: https://doi.org/10.1021/jp060175g
NICODEME, T.; BARCHEM, T.; JACQUET, N.; RICHEL, A. Thermochemical conversion of sugar industry by-products to biofuels. Renewable and Sustainable Energy Reviews, v. 88, p. 151-159, 2018. https://doi.org/10.1016/j.rser.2018.02.037 DOI: https://doi.org/10.1016/j.rser.2018.02.037
PHAAHLAMOHLAKA, T. N.; DLAMINI, M. W.; MOGODI, M. W.; KUMI, D. O.; COVILLE, N. J. A sinter resistant Co Fischer-Tropsch catalyst promoted with Ru and supported on titania encapsulated by mesoporous silica. Applied Catalysis A: General, v. 552, p. 129- 137, 2018. https://doi.org/10.1016/j.apcata.2017.12.015 RODRIGUES, J. J.; PECCHI, G.; DOI: https://doi.org/10.1016/j.apcata.2017.12.015
FERNANDES, F, A, N.; RODRIGUES, M, G, F. Ruthenium promotion of Co/SBA-15 catalysts for Fischer-Tropsch synthesis in slurry-phase reactors. Journal of Natural Gas Chemistry, v. 21, p. 722-728, 2012. https://doi.org/10.1016/S1003-9953(11)60425-8 DOI: https://doi.org/10.1016/S1003-9953(11)60425-8
RODRIGUES, J.J.; FERNANDES, F. A. N.; RODRIGUES, M. G. F. Study of Co/SBA-15 catalysts prepared by microwave and conventional heating methods and application in Fischer-Tropsch synthesis. Applied Catalysis A: General, v. 468, p. 32-37, 2013. https://doi.org/10.1016/j.apcata.2013.08.035 DOI: https://doi.org/10.1016/j.apcata.2013.08.035
RYTTER, E.; BORG, Ø.; T, SAKOUMIS, N. E.; HOLMEN, A. Water as key to activity and selectivity in Co Fischer-Tropsch synthesis: γ-alumina based structure-performance relationships. Journal of Catalysis, v. 365, p. 334-343, 2018. https://doi.org/10.1016/j.jcat.2018.07.003 DOI: https://doi.org/10.1016/j.jcat.2018.07.003
STEYNBERG, A.; DESHMUKH, S.; BOBOTA, H. FischerTropsch catalyst deactivation in commercial microchannel reactor operation. Catalysis Today, v. 299, p. 10-13, 2018. https://doi.org/10.1016/j.cattod.2017.05.064 DOI: https://doi.org/10.1016/j.cattod.2017.05.064
XIONG, H.; ZHANG, Y.; LIEW, K., LI, J. Fischer– Tropsch synthesis: The role of pore size for Co/SBA15 catalysts. Journal of Molecular Catalysis A: Chemical, v. 295, p. 68–76, 2010. https://doi.org/10.1016/j.molcata.2008.08.017 DOI: https://doi.org/10.1016/j.molcata.2008.08.017
ZHANG, X.; QIAN, W.; ZHANG, H.; SUN, Q.; YING, W. Effect of the operation parameters on the Fischer– Tropsch synthesis in fluidized bed reactors. Chinese Journal of Chemical Engineering, v. 26, p. 245-251, 2018. https://doi.org/10.1016/j.cjche.2017.05.012 DOI: https://doi.org/10.1016/j.cjche.2017.05.012
ZHAO, D.; HUO, Q.; FEND J, B, F.; CHMELKA, G, D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, v.120, p. 6024-6036, 1998. https://doi.org/10.1021/ja974025i DOI: https://doi.org/10.1021/ja974025i