Study fischer-tropsch synthesis

mesoporous catalysts

Authors

  • Jocielys Jovelino Rodrigues Universidade Federal de Campina Grande (UFCG), Campina Grande, PB. https://orcid.org/0000-0002-9860-697X
  • Alfredina dos Santos Araujo Universidade Federal de Campina Grande (UFCG), Campina Grande, PB.
  • Antônio Fernandes Filho Universidade Federal de Campina Grande (UFCG), Campina Grande, PB.
  • Maria do Socorro Araújo Rodrigues Universidade Federal de Campina Grande (UFCG), Campina Grande, PB.

DOI:

https://doi.org/10.14295/holos.v23i2.12496

Keywords:

SBA-15, Ruthenium, Rice husk ashes, Slurry bed reactor, Fischer-Tropsch synthesis, Cobalt.

Abstract

This work was to evaluate the catalytic properties Ru/Cobalt/SBA-15 catalyst for Fischer-Tropsch synthesis (FTS). The molecular sieve SBA-15 synthesized by hydrothermal method with rice husk ashes (RHA) and with tetraethyl orthosilicate (TEOS). The Ru promoted Co/SBA-15 catalyst was prepared by wet impregnation method and was characterized by X-ray diffraction, X-ray energy dispersion spectrophotometer, N2 adsorption-desorption, temperature-programmed reduction and transmission electron microscopy. The Fischer-Tropsch synthesis using the catalysts were carried out to evaluate the catalysts activities and its effect on FTS product distribution. The synthesis was carried out in a slurry reactor operating at 513 K, 20 atm, CO : H2 molar ratio of 1 : 2. X-ray diffraction showed that the calcined cobalt catalyst did not modify the structure of SBA-15, proving that Co was present under the form of Co3O4 in the catalyst. The addition of cobalt in SBA-15 decreased the specific superficial area of the molecular sieve. By RTP results was found the ranges of temperature reduction typical of iron oxides phases.  Fischer-Tropsch synthesis activity and C5+hydrocarbon selectivity increased with the addition of Ru. The increases in activity and selectivity were attributed to the increased number of active sites resulting from higher reducibility and the synergetic effect of Ru and Co. The most interesting fact to be pointed out is that the use of this catalytic system for the catalyst prepared with alternative source of silica and  cheap  (rice hull ash) showed high selectivity in liquid products, that is, in hydrocarbons with C5+ (88.2% w/w ), higher than the catalyst prepared with conventional silica source.

Author Biography

Jocielys Jovelino Rodrigues, Universidade Federal de Campina Grande (UFCG), Campina Grande, PB.

Centro de Ciências e Tecnologias Agroalimentar

References

CAI, Q.; LI, J. Catalytic properties of the Ru promoted Co/SBA-15 catalysts forFischer–Tropsch synthesis. Catalysis Communications, v. 9, p. 2003- 2006, 2008. https://doi.org/10.1016/j.catcom.2008.03.035 DOI: https://doi.org/10.1016/j.catcom.2008.03.035

CHEN, W.; LIN, Y.; DAÍ, Y.; NA, Y.; SUN, Y. Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts. Catalysis Today, v.311, p. 8-22, 2018. https://doi.org/10.1016/j.cattod.2017.09.019 DOI: https://doi.org/10.1016/j.cattod.2017.09.019

CHEN, G.; GUO, C.; HUANG, Z.; YUAN, G. Synthesis of ethanol from syngas over iron-promoted Rh immobilized on modified SBA-15 molecular sieve: Effect of iron loading. Chemical Engineering Research and Design, v. 89 p 249-253, 2011. https://doi.org/10.1016/j.cherd.2010.07.014 DOI: https://doi.org/10.1016/j.cherd.2010.07.014

FURTADO, J. L. B.; CARVALHO, A.; VIEIRA, R. Carbon nanofibers as macroscopic catalyst support for Fischer-Tropsch synthesis. Advanced Chemistry Letters, v. 1, p. 317-320, 2013. https://doi.org/10.1166/acl.2013.1035 DOI: https://doi.org/10.1166/acl.2013.1035

GHAMPSON, I. T.; NEWMAN, C.; KONK, L.; PIER, E.; HURLEY, K. D.; POLLOCK, R. A.; WALSH, B. R.; GOUNDIE, B.; WRIGHT, J.; WHEELER, M. C.; MEULENBERG, R. W.; DESISTO, W. J.; FREDERICK, B. G.; AUSTIN, R. N. Effects of pore diameter on particle size, phase, and turnover frequency in mesoporous silica supported cobalt Fischer-Tropsch catalysts. Applied Catalysis A: General, v. 388, p. 57-67, 2010. https://doi.org/10.1016/j.apcata.2010.08.028 DOI: https://doi.org/10.1016/j.apcata.2010.08.028

GONZALEZ, O.; PEREZ, H.; NAVARRO, P.; ALMEIDA, L.C.; PACHECO, J.G.; MONTES, M. Use of different mesostructured materials based on silica as cobalt supports for the Fischer–Tropsch synthesis. Catalysis Today, v.148, p.140-147, 2009. https://doi.org/10.1016/j.cattod.2009.03.030

GAVRILOVIC, L.; BRANDIN, J.; HOLMEN, A.; VENVIK, H.; BLEKKAN, E. Fischer-Tropsch synthesis Investigation of the deactivation of a Co catalyst by exposure to aerosol particles of potassium salt. Applied Catalysis B: Environmental, v. 230, p. 203- 209, 2018. https://doi.org/10.1016/j.apcatb.2018.02.048 DOI: https://doi.org/10.1016/j.apcatb.2018.02.048

JIANG. Z.; ZHAO, Y.; HUANG, C.; SONG, Y.; LIU, Z. Metal-support interactions regulated via carbon coating A case study of Co/SiO2 for Fischer-Tropsch synthesis. Fuel, v. 226, p. 213-220, 2018. https://doi.org/10.1016/j.fuel.2018.03.195 DOI: https://doi.org/10.1016/j.fuel.2018.03.195

LLIUTA, I.; LARACHI, F. Fischer-Tropsch synthesis in vertical, inclined and oscillating trickle-bed reactors for offshore floating applications. Chemical Engineering Science, v. 177, p. 509-522, 2018. https://doi.org/10.1016/j.ces.2017.12.012 DOI: https://doi.org/10.1016/j.ces.2017.12.012

LOY et al., The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production. Energy Conversion and Management. https://doi.org/10.1016/j.cattod.2009.03.030 DOI: https://doi.org/10.1016/j.cattod.2009.03.030

MARTINEZ, A.; LÓPEZ, C.; MÁRQUEZ, F.; DÍAZ, I. Fischer-Tropsch Synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis, v.220, p.486-499, 2003. https://doi.org/10.1016/S0021-9517(03)00289-6 DOI: https://doi.org/10.1016/S0021-9517(03)00289-6

MANGALOĞLU, D. U.; BARANAK, M.; ATAC, O.; ATAKUL, H. J. Effect of the promoter presence in catalysts on the compositions of Fischer–Tropsch synthesis products. Journal of Industrial and Engineering Chemistry, v. 66, p. 298-310, 2018. https://doi.org/10.1016/j.jiec.2018.05.044 DOI: https://doi.org/10.1016/j.jiec.2018.05.044

MENDES, F M T; PEREZ, C A C; NORONHA, F B; SOUZA, C D D; CESAR, D V; FREUND, H J; SCHMAL, M. Fischer−Tropsch Synthesis on Anchored Co/Nb2O5/Al2O3 Catalysts: The Nature of the Surface and the Effect on Chain Growth. Journal of Physical Chemistry, v.110, p. 9155-9163, 2006. http://dx.doi.org/10.1021/jp060175g DOI: https://doi.org/10.1021/jp060175g

NICODEME, T.; BARCHEM, T.; JACQUET, N.; RICHEL, A. Thermochemical conversion of sugar industry by-products to biofuels. Renewable and Sustainable Energy Reviews, v. 88, p. 151-159, 2018. https://doi.org/10.1016/j.rser.2018.02.037 DOI: https://doi.org/10.1016/j.rser.2018.02.037

PHAAHLAMOHLAKA, T. N.; DLAMINI, M. W.; MOGODI, M. W.; KUMI, D. O.; COVILLE, N. J. A sinter resistant Co Fischer-Tropsch catalyst promoted with Ru and supported on titania encapsulated by mesoporous silica. Applied Catalysis A: General, v. 552, p. 129- 137, 2018. https://doi.org/10.1016/j.apcata.2017.12.015 RODRIGUES, J. J.; PECCHI, G.; DOI: https://doi.org/10.1016/j.apcata.2017.12.015

FERNANDES, F, A, N.; RODRIGUES, M, G, F. Ruthenium promotion of Co/SBA-15 catalysts for Fischer-Tropsch synthesis in slurry-phase reactors. Journal of Natural Gas Chemistry, v. 21, p. 722-728, 2012. https://doi.org/10.1016/S1003-9953(11)60425-8 DOI: https://doi.org/10.1016/S1003-9953(11)60425-8

RODRIGUES, J.J.; FERNANDES, F. A. N.; RODRIGUES, M. G. F. Study of Co/SBA-15 catalysts prepared by microwave and conventional heating methods and application in Fischer-Tropsch synthesis. Applied Catalysis A: General, v. 468, p. 32-37, 2013. https://doi.org/10.1016/j.apcata.2013.08.035 DOI: https://doi.org/10.1016/j.apcata.2013.08.035

RYTTER, E.; BORG, Ø.; T, SAKOUMIS, N. E.; HOLMEN, A. Water as key to activity and selectivity in Co Fischer-Tropsch synthesis: γ-alumina based structure-performance relationships. Journal of Catalysis, v. 365, p. 334-343, 2018. https://doi.org/10.1016/j.jcat.2018.07.003 DOI: https://doi.org/10.1016/j.jcat.2018.07.003

STEYNBERG, A.; DESHMUKH, S.; BOBOTA, H. FischerTropsch catalyst deactivation in commercial microchannel reactor operation. Catalysis Today, v. 299, p. 10-13, 2018. https://doi.org/10.1016/j.cattod.2017.05.064 DOI: https://doi.org/10.1016/j.cattod.2017.05.064

XIONG, H.; ZHANG, Y.; LIEW, K., LI, J. Fischer– Tropsch synthesis: The role of pore size for Co/SBA15 catalysts. Journal of Molecular Catalysis A: Chemical, v. 295, p. 68–76, 2010. https://doi.org/10.1016/j.molcata.2008.08.017 DOI: https://doi.org/10.1016/j.molcata.2008.08.017

ZHANG, X.; QIAN, W.; ZHANG, H.; SUN, Q.; YING, W. Effect of the operation parameters on the Fischer– Tropsch synthesis in fluidized bed reactors. Chinese Journal of Chemical Engineering, v. 26, p. 245-251, 2018. https://doi.org/10.1016/j.cjche.2017.05.012 DOI: https://doi.org/10.1016/j.cjche.2017.05.012

ZHAO, D.; HUO, Q.; FEND J, B, F.; CHMELKA, G, D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, v.120, p. 6024-6036, 1998. https://doi.org/10.1021/ja974025i DOI: https://doi.org/10.1021/ja974025i

Downloads

Published

2023-10-22

How to Cite

Rodrigues, J. J., Araujo, A. dos S., Fernandes Filho, A., & Rodrigues, M. do S. A. (2023). Study fischer-tropsch synthesis: mesoporous catalysts. Holos Environment, 23(2), 87–102. https://doi.org/10.14295/holos.v23i2.12496

Issue

Section

Artigos