PM10 concentration trend analysis and effectiveness of public policies

Authors

DOI:

https://doi.org/10.14295/holos.v22i2.12470

Keywords:

Air Pollutant, PM10, Environmental Monitoring, Openair.

Abstract

Atmospheric pollution is an environmental problem that causes harmful effects, both in the short and long term, generating, therefore, constant concern for managers around the world. This study aimed to verify both the behavior trend in the concentration of inhalable particulate matter (PM10) and the effectiveness of public policies in the search for the reduction and control of this pollutant. Two municipalities in the state of São Paulo, with distinct characteristics of development, industrialization, and urban expansion were used as case studies. Data from the city of Marília (between 2009 and 2020) and the city of Paulínia (between 2002 and 2020) were collected from the QUALAR platform, of the Environmental Company of the State of São Paulo (CETESB) and treated with the Openair package, to R Software. It was possible to verify that winter and spring had higher PM10 concentrations when compared to other seasons, as well as to show that its concentration was much lower on weekends. The data regarding the concentrations of PM10 in the cities of Marília and Paulínia, when compared to State Decree 59.113, indicated that, as of 2013, the concentrations of this pollutant showed considerable reductions, most likely related to actions and practices of public policies and by the performance of the state environmental agency. In order to reach the new WHO guidelines, it is suggested that new measures are adopted.

Author Biographies

Lucas Veloso Marinho, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil.

Faculdade de Tecnologia (FT), Universidade Estadual de Campinas (Unicamp), Campus 1, Limeira-SP

http://lattes.cnpq.br/9703865996757351

Danilo Covaes Nogarotto, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brasil.

Faculdade de Tecnologia (FT), Universidade Estadual de Campinas (Unicamp), Campus 1, Limeira-SP

http://lattes.cnpq.br/8803768507431721

Simone Andrea Pozza, Universidade Estadual de Campinas (UNICAMP)

Faculdade de Tecnologia (FT), Universidade Estadual de Campinas (Unicamp), Campus 1, Limeira-SP

http://lattes.cnpq.br/5530984461673946

References

ALVES, D. D., RIEGEL, R. P., KLAUCK, C. R., CERATTI, A. M., HANSEN, J., CANSI, L. M., POZZA, S. A., DE QUEVEDO, D. M., OSÓRIO, D. M. M. Source apportionment of metallic elements in urban atmospheric particulate matter and assessment of its water-soluble fraction toxicity. Environmental Science and Pollution Research, v. 27, 11, p. 12202–12214, 2020. https://doi.org/10.1007/s11356-020-07791-8 DOI: https://doi.org/10.1007/s11356-020-07791-8

ANDRADE, F. M.; KUMAR, P.; FREITAS, D. E.; YNOUE, Y. R.; MARTINS, J.; NOGUEIRA, T.; MARTINEZ, P.; MIRANDA, M. R.; ALBUQUERQUE, P.; GONÇALVES, T. L. F.; OYAMA, B.; ZHANG, Y. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmospheric Environment, v. 159, p. 66–82, 2017. https://doi.org/10.1016/j.atmosenv.2017.03.051 DOI: https://doi.org/10.1016/j.atmosenv.2017.03.051

BRASIL Conselho Nacional de Meio Ambiente. Resolução nº 18 - Dispõe sobre a criação do Programa de Controle de Poluição do Ar por veículos automotores - publicado no diário oficial da união em 17 de junho de 1986.

CALASANS, N. C. Cidades do Petróleo no Brasil: expansão urbana e o não planejar em Paulínia (SP) e Macaé (RJ). Tese (Mestrado em Arquitetura e Urbanismo) – Programa de Pesquisa e Pós Graduação, Universidade de Brasília (UNB), 2017.

CARSLAW, D.C., ROPKINS, K. Openair — an R package for air quality data analysis. Environmental Modelling & Software, v. 27-28, p. 52–61, 2012. https://doi.org/10.1016/j.envsoft.2011.09.008 DOI: https://doi.org/10.1016/j.envsoft.2011.09.008

CARSLAW, D.C. The openair manual: open-source tools for analysing air pollution data. Manual for version 1.1-4, King’s College London, 2015.

CETESB – Companhia Ambiental do Estado de São Paulo. Plano de redução de emissão de fontes estacionárias (PREFE). São Paulo, SP: 2014.

CETESB – Companhia Ambiental do Estado de São Paulo. Qualidade do ar, 2020. Disponível em: https://qualar.cetesb.sp.gov.br/qualar. Acesso: em :12 nov. 2020.

CETESB - Companhia Ambiental do Estado de São Paulo. Padrões de Qualidade do ar, 2022. Disponível em: https://cetesb.sp.gov.br/ar/padroes-de-qualidade-do-ar/. Acesso em: 10 fev. 2022.

COHEN, A. J., BRAUER, M., BURNETT, R., ANDERSON, H. R., FROSTAD, J., ESTEP, K., BALAKRISHNAN, K., BRUNEKREEF, B., MORAWSKA, L., III, C. A. P., SHIN, H., STRAIF, K., SHADDICK, G., THOMAS, M., DINGENEN, R. VAN, DONKELAAR, A. VAN, VOS, T., MURRAY, C. J. L.,; FOROUZANFAR, M. H. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, v. 389, n. 10082, p. 1907–1918, 2015. https://doi.org/10.1016/S0140-6736(17)30505-6 DOI: https://doi.org/10.1016/S0140-6736(17)30505-6

COLLS, J.; TIWARY, A. Air pollution: measurement, modelling and mitigation. 3. ed. New York: Routledge, 2010. DOI: https://doi.org/10.4324/9780203871966

DERÍSIO, J.C. Introdução ao controle de poluição ambiental. 5. ed. 2017. 232 p.

DOMINICK, D. J. H.; LATIF, M. T.; ZAIN, S. M.; ARIS, A. Z. Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment, v. 60, p. 172–181, 2012. https://doi.org/10.1016/j.atmosenv.2012.06.021. DOI: https://doi.org/10.1016/j.atmosenv.2012.06.021

GAMA C., MONTEIRO A., PIO C., MIRANDA A., BALDASANO J., TCHEPEL O. Temporal patterns and trends of particulate matter over Portugal: a long-term analysis of background concentrations. Air Quality, Atmosphere & Health, v. 11, p. 390-407, 2018. https://doi.org/10.1007/s11869-018-0546-8 DOI: https://doi.org/10.1007/s11869-018-0546-8

IAG. Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG/USP). Estação meteorológica do IAG/USP, 2022. Disponível em: http://www.estacao.iag.usp.br/seasons/index.php. Acesso em: 04 fev. 2022.

IARC - International Agency for Research on Cancer (2013) Air pollution and cancer. IARC Scientific publication no. 161, 2013.

IBGE – Instituto Brasileiro de Geografia e Estatística. Paulínia. Disponível em: https://cidades.ibge.gov.br/brasil/sp/paulinia/panorama. Acesso em: 20 nov. 2020a.

IBGE – Instituto Brasileiro de Geografia e Estatística. Marília. Disponível em: https://cidades.ibge.gov.br/brasil/sp/Marília/panorama. Acesso em: 20 nov. 2020b.

INMET – Instituto Nacional de Meteorologia. Disponível em: https://portal.inmet.gov.br/noticias/s%C3%A3o-paulo-capital-balan%C3%A7o-da-primavera-e-progn%C3%B3stico-para-o-ver%C3%A3o-2020-2021. Acesso em: 04 abr. 2021.

ISS - Instituto Saúde e Sustentabilidade. Pesquisa: qualidade do ar no estado de São Paulo 2015 sob a visão da saúde. 2017. Disponível em: https://saudeesustentabilidade.org.br/wp-content/uploads/2017/12/Cetesb_Saude_FINAL_V2_WEB.pdf. Acesso: 06 jul. 2021.

KARAGULIAN, F.; BELIS, C. A.; DORA, C. F. C.; PRÜSS-USTÜN, A. M.; BONJOUR, S.; ADAIR-ROHANI, H. ; AMANN, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, v. 120, p. 475–483, 2015. https://doi.org/10.1016/j.atmosenv.2015.08.087 DOI: https://doi.org/10.1016/j.atmosenv.2015.08.087

MARTINS. L. D.; ANDRADE, M. F.; Ozone Formation Potentials of Volatile Organic Compounds and Ozone Sensitivity to Their Emission in the Megacity of São Paulo, Brazil. Water, Air & Soll Pollution. v. 195, p. 201 – 213. 2008. https://doi.org/10.1007/s11270-008-9740-x DOI: https://doi.org/10.1007/s11270-008-9740-x

MASELLI, B. S., GIRON, M. C. G., LIM, H., BERGVALL, C., WESTERHOLM, R., DREIJ, K., WATANABE, T., CARDOSO, A. A., UMBUZEIRO, G. A. & KUMMROW, F. (2019) Comparative mutagenic activity of atmospheric particulate matter from Limeira, Stockholm, and Kyoto. Environmental and Molecular Mutagenesis, v. 60, p. 607–616. https://doi.org/10.1002/em.22293 DOI: https://doi.org/10.1002/em.22293

MAZZOLI, C. R. Estudo numérico da influência das mudanças climáticas e das emissões urbanas no ozônio troposférico da Região Metropolitana de São Paulo. 2013. 162p. Tese (Doutorado em Ciências) – Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo (USP), São Paulo, 2013.

MICHANOWICZ, D. R.; SHMOOL, J. L. C.; TUNNO, B. J.; TRIPATHY, S.; GILLOOLY, S.; KINNEE, E.; CLOUGHERTY, J. E. A hybrid land use regression/AERMOD model for predicting intra-urban variation in PM2.5. Atmospheric Environment, v. 131, p. 307–315, 2016. https://doi.org/10.1016/j.atmosenv.2016.01.045 DOI: https://doi.org/10.1016/j.atmosenv.2016.01.045

MUNIR S.; GABR S.; HABEEBULLAH T.; JANAJRAH M. Spatiotemporal analysis of fine particulate matter (PM2.5) in Saudi Arabia using remote sensing data. Research Paper. v. 19, p. 195 – 205, 2016. https://doi.org/10.1016/j.ejrs.2016.06.001 DOI: https://doi.org/10.1016/j.ejrs.2016.06.001

NOGAROTTO, D. C.; POZZA, S. A. (2020). A review of multivariate analysis: is there a relationship between airborne particulate matter and meteorological variables? Environmental Monitoring Assessment, 192, n. 573, 2020. https://doi.org/10.1007/s10661-020-08538-1 DOI: https://doi.org/10.1007/s10661-020-08538-1

PIRAS, G.; PINI, F.; GARCIA, D. A. Correlations of PM10 concentrations in urban areas with vehicle fleet development, rain precipitation and diesel fuel sales. Atmospheric Pollution Research, v. 10, p. 1165-1179, 2019. https://doi.org/10.1016/j.apr.2019.01.022 DOI: https://doi.org/10.1016/j.apr.2019.01.022

POZZA, S. A.; PENTEADO, C. S. G. Monitoramento e Caracterização Ambiental. São Carlos: EdUFSCar, 2015. p.72-73, 2015.

SÃO PAULO - Estado de São Paulo, Decreto nº 59.113 - Define novos padrões de qualidade do ar e dá providências correlatas - publicado na Casa Civil em 23 de abril de 2013.

SCHWEIZER D.; CISNEROS, R.; TRAINA, S.; GHEZZEHEI, T. A.; SHAW, G. Using National Ambient Air Quality Standards for fine particulate matter to assess regional wildland fire smoke and air quality management. Atmospheric Environment. pp. 345 – 356, 2017. https://doi.org/10.1016/j.jenvman.2017.07.004 DOI: https://doi.org/10.1016/j.jenvman.2017.07.004

SEINFELD, J. H.; PANDIS, S. N. Atmospheric chemistry and physics: from air pollution to climate change. 3. ed. New York: John Wiley & Sons, 2016.

SOPORAN, V. F.; NASCUTIU, L.; SOPORAN, B.; PAVAI, C. Case studies of methane dispersion patterns and odor strength in vicinity of municipal solid waste landfill of Cluj–Napoca, Romania, using numerical modeling. Atmospheric Pollution Research, v. 6, p. 312–321, 2015. https://doi.org/10.5094/APR.2015.035 DOI: https://doi.org/10.5094/APR.2015.035

UNAL, Y. S.; TOROS, H.; DENIZ, A.; INCECIK, S. Influence of meteorological factors and emission sources on spatial and temporal variations of PM10 concentrations in Istanbul metropolitan area. Atmospheric Environment. v. 45, p. 5504- 5513, 2011. https://doi.org/10.1016/j.atmosenv.2011.06.039 DOI: https://doi.org/10.1016/j.atmosenv.2011.06.039

VALENTINI, S.; BARNABA, F.; BERNARDONI, V.; CALZOLAI, G.; COSTABILE, F.; DI LIBERTO, L.; FORELLO, A. C.; GOBBI, G. P.; GUALTIERI, M.; LUCARELLI, F.; NAVA, S.; PETRALIA, E.; VALLI, G.; WIEDENSOHLER, A.; VECCHI, R. Classifying aerosol particles through the combination of optical and physical-chemical properties: Results from a wintertime campaign in Rome (Italy). Atmospheric Research, v. 235, p. 104799, 2020. https://doi.org/10.1016/j.atmosres.2019.104799 DOI: https://doi.org/10.1016/j.atmosres.2019.104799

VALLERO, D. A. Fundamentals of Air Pollution. Elsevier: 4th edition. 967 p. 2008. DOI: https://doi.org/10.1016/B978-012373615-4/50031-5

VALOTTO, G.; VARIN, C. Characterization of hourly NOx atmospheric concentrations near the Venice International Airport with additive semi-parametric statistical models. Atmospheric Research, v. 167, p. 216–223, 2016. https://doi.org/10.1016/j.atmosres.2015.07.023 DOI: https://doi.org/10.1016/j.atmosres.2015.07.023

WHO (World Health Organization). WHO global air quality guidelines. Disponível em: https://www.who.int/news-room/questions-and-answers/item/who-global-air-quality-guidelines. Acesso: 10 fev. 2022.

Published

2022-07-30

How to Cite

Marinho, L. V., Nogarotto, D. C., & Pozza, S. A. (2022). PM10 concentration trend analysis and effectiveness of public policies. Holos Environment, 22(2), 78–93. https://doi.org/10.14295/holos.v22i2.12470

Issue

Section

Artigos