Impacto da queima de biomassa nas propriedades físico-químicas de aerossóis no Pantanal brasileiro

Autores

DOI:

https://doi.org/10.14295/holos.v23i2.12489

Resumo

O Pantanal brasileiro é uma floresta complexa com grande importância no controle do fluxo de água na Bacia do Rio Paraguai, apresentando crescente produção agropecuária e tem sofrido fortemente por queimadas cuja emissão impacta a formação de nuvens, espalhamento da radiação, qualidade do ar e a saúde humana. Por isso, para analisar o impacto das queimadas nas propriedades físico-químicas dos aerossóis em uma reserva natural no Pantanal Norte, material particulado foi coletado em filtros, durante sete meses de amostragem na estação seca. A caracterização química foi realizada com fluorescência de raios-X por dispersão de energia e refletômetria para quantificação de black carbon equivalente(eBC). As propriedades óticas obtidas do sítio Cuiabá-Miranda da AERONET como: Profundidade Ótica de Aerossol (AOD), Expoentes de Angstrom de absorção e espalhamento (EAE, AAE, SAE), Albedo de Espalhamento Único (SSA) e Distribuição de Tamanho Volumétrico, foram usadas para caracterizar e classificar oticamente os aerossóis. Os resultados indicam forte impacto da emissão de queimadas nas propriedades óticas, com aumento das médias de AOD, SSA, AAE e SAE. Observou-se a alteração do perfil químico dos elementos traços, que em sua maioria é Al, Si, Fe e P, na estação chuvosa; e BC equivalente, S, K, ao quando há maior incidência de queimadas. Houve redução do tamanho médio das partículas coletadas verificada pela massa coletada nos filtros e pelo produto de inverso de distribuição volumétrica da AERONET. O valor médio da concentração de massa PM de 6,7±5,56 µg.m-3 para a moda grossa e 5,98±2,18 µg.m-3 para a moda fino. A concentração média de eBC foi de 0,59±0,53 µg.m-3, e durante um episódio de incêndio florestal, atingiu 1,68 µg.m-3 na moda fina. Os resultados mostraram a relação direta entre agrupamentos óticos de alta absorção e de menor tamanho e o aumento da concentração de eBC.

Referências

ANDREAE, M. O. Soot Carbon and Excess Fine Potassium: Long-Range Transport of Combustion-Derived Aerosols. Science (New York, N.Y.), v. 220, p. 10-13, 1983. Disponível em: http://www.sciencemag.org/content/220/4602/1148.short.

https://doi.org/10.1126/science.220.4602.1148

ANDREAE, M. O.; GELENCSÉR, A. Black carbon or brown carbon? the nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics, v. 6, n. 10, p. 3131–3148, 2006. https://doi.org/10.5194/acp-6-3131-2006

ARAGÃO, L. E. O. C.; ANDERSON, L. O.; FONSECA, M. G.; ROSAN, T. M.; VEDOVATO, L. B.; WAGNER, F. H.; SILVA, C. V. J.; SILVA JUNIOR, C. H. L.; ARAI, E.; AGUIAR, A. P.; BARLOW, J.; BERENGUER, E.; DEETER, M. N.; DOMINGUES, L. G.; GATTI, L.; GLOOR, M.; MALHI, Y.; MARENGO, J. A.; MILLER, J. B.; PHILLIPS, O. L.; SAATCHI, S. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, v. 9, n. 1, p. 1–12, 2018. https://doi.org/10.1038/s41467-017-02771-y

ARANA, A.; ARTAXO, P. Elemental composition of the atmospheric aerosol in the central amazon basin. Quim. Nova, v. 37, n. 2, p. 268–276, 2014. https://doi.org/10.5935/0100-4042.20140046

ARANA, A.; LOUREIRO, A. L.; BARBOSA, H. M. J.; VAN GRIEKEN, R.; ARTAXO, P. Optimized energy dispersive X-ray fluorescence analysis of atmospheric aerosols collected at pristine and perturbed Amazon Basin sites. X-Ray Spectrometry, v. 43, n. 4, p. 228–237, 2014. https://doi.org/10.1002/xrs.2544

ARTAXO, P.; BARBOSA, H. M. J.; RIZZO, L. V.; BRITO, J. F.; SENA, E. T.; CIRINO, G. G.; ARANA, A. Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning impacts. AIP Conference Proceedings, v. 1527, p. 487–490, 2013. https://doi.org/10.1063/1.4803311

ARTAXO, P.; FERNANDES, E. T.; MARTINS, J. V.; YAMASOE, M. A.; HOBBS, P. V.; MAENHAUT, W.; LONGO, K. M.; CASTANHO, A. Large-scale aerosol source apportionment in Amazonia. Journal of Geophysical Research Atmospheres, v. 103, n. D24, p. 31837–31847, 1998. https://doi.org/10.1029/98JD02346

ARTAXO, P.; MARTINS, J. V.; YAMASOE, M. A.; PROCÓPIO, A. S.; PAULIQUEVIS, T. M.; ANDREAE, M. O.; GUYON, P.; GATTI, L. V.; LEAL, A. M. C. Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. Journal of Geophysical Research: Atmospheres, v. 107, n. 20, p. LBA 49-1-LBA 49-14, 2002. https://doi.org/10.1029/2001JD000666

ARTAXO, P.; RIZZO, L. V.; BRITO, J. F.; BARBOSA, H. M. J.; ARANA, A.; SENA, E. T.; CIRINO, G. G.; BASTOS, W.; MARTIN, S. T.; ANDREAE, M. O. Atmospheric aerosols in Amazonia and land use change: From natural biogenic to biomass burning conditions. Faraday Discussions, v. 165, p. 203–235, 2013. https://doi.org/10.1039/c3fd00052d

BAHADUR, R.; PRAVEEN, P. S.; XU, Y.; RAMANATHAN, V. Solar absorption by elemental and brown carbon determined from spectral observations. Proceedings of the National Academy of Sciences of the United States of America, v. 109, n. 43, p. 17366–17371, 2012. https://doi.org/10.1073/pnas.1205910109

BERGSTROM, R. W.; PILEWSKIE, P.; RUSSELL, P. B.; REDEMANN, J.; BOND, T. C.; QUINN, P. K.; SIERAU, B. Spectral absorption properties of atmospheric aerosols. Atmospheric Chemistry and Physics, v. 7, n. 23, p. 5937–5943, 2007. https://doi.org/10.5194/acp-7-5937-2007

BLUNDEN, J.; ARNDT, D. S. State of the Climate in 2015Bulletin of the American Meteorological Society., 2016. Disponível em: https://journals.ametsoc.org/doi/10.1175/2016BAMSStateoftheClimate.1. https://doi.org/10.1175/2016BAMSStateoftheClimate.1

BOUCHER, O.; RANDALL, D. Clouds and aerosolsClimate Change 2013 the Physical Science Basis: working group i contribution to the fifth assessment report of the intergovernmental panel on climate change. [S. l.: s. n.], 2013.

BRITO, J.; RIZZO, L. V.; MORGAN, W. T.; COE, H.; JOHNSON, B.; HAYWOOD, J.; LONGO, K.; FREITAS, S.; ANDREAE, M. O.; ARTAXO, P. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment. Atmospheric Chemistry and Physics, v. 14, n. 22, p. 12069–12083, 2014. https://doi.org/10.5194/acp-14-12069-2014

CAMPONOGARA, G.; SILVA DIAS, M. A. F.; CARRIÓ, G. G. Relationship between Amazon biomass burning aerosols and rainfall over the la Plata Basin. Atmospheric Chemistry and Physics, v. 14, n. 9, p. 4397–4407, 2014. https://doi.org/10.5194/acp-14-4397-2014

CAZORLA, A.; BAHADUR, R.; SUSKI, K. J.; CAHILL, J. F.; CHAND, D.; SCHMID, B.; RAMANATHAN, V.; PRATHER, K. A. Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements. Atmospheric Chemistry and Physics, v. 13, n. 18, p. 9337–9350, 2013. https://doi.org/10.5194/acp-13-9337-2013

COELHO, C. A. S.; CAVALCANTI, I. A. F.; COSTA, S. M. S.; FREITAS, S. R.; ITO, E. R.; LUZ, G.; SANTOS, A. F.; NOBRE, C. A.; MARENGO, J. A.; PEZZA, A. B. Climate diagnostics of three major drought events in the Amazon and illustrations of their seasonal precipitation predictions. Meteorological Applications, v. 19, n. 2, p. 237–255, 2012. https://doi.org/10.1002/met.1324

CORINGA, E. D. A. O.; COUTO, E. G.; TORRADO, P. V. Geoquímica de solos do pantanal norte, mato grosso. Revista Brasileira de Ciencia do Solo, v. 38, n. 6, p. 1784–1793, 2014. https://doi.org/10.1590/S0100-06832014000600013

CRUTZEN, P. J.; ANDREAE, M. O. Atmospheric Aerosols: Biogeochemical Sources and Role in Atmospheric Chemistry. Science, v. 276, 1997. https://doi.org/10.1126/science.276.5315.1052

CRUTZEN, P. J.; ANDREAE, M. O. Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science, v. 250, n. 4988, p. 1669–1678, 1990. https://doi.org/10.1126/science.250.4988.1669

CURADO, L. F. A.; NOGUEIRA, J. de S.; SANCHES, L.; BIUDES, M. S.; RODRIGUES, T. R. Interannual Variability of Energy Flux in Atmospheric Instability Conditions at Pantanal of Mato Grosso-Brazil. Atmospheric and Climate Sciences, v. 02, n. 04, p. 518–524, 2012. https://doi.org/10.4236/acs.2012.24046

DA SILVA, A. M. C.; MATTOS, I. E.; FREITAS, S. R.; LONGO, K. M.; HACON, S. S. Material particulado (PM2.5) de queima de biomassa e doenças respiratórias no sul da amazônia brasileira. Revista Brasileira de Epidemiologia, v. 13, n. 2, p. 337–351, 2010. https://doi.org/10.1590/S1415-790X2010000200015

DE MIRANDA, R. M.; LOPES, F.; DO ROSÁRIO, N. É.; YAMASOE, M. A.; LANDULFO, E.; DE FATIMA ANDRADE, M. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil. Environmental Monitoring and Assessment, v. 189, n. 1, 2016. https://doi.org/10.1007/s10661-016-5659-7

DUBOVIK, O.; HOLBEN, B.; ECK, T. F.; ALEXANDER SMIRNOV; YORAM J. KAUFMAN; KING, M. D.; DIDIER TANRE; SLUTSKER, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. Journal of Atmospheric Sciences, v. 59, p. 590–608, 2002. https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2

ECHALAR, F.; GAUDICHET, A.; CACHIER, H. Forest. v. 22, n. 22, p. 3039–3042, 1995. https://doi.org/10.1029/95GL03170

ECK, T. F.; HOLBEN, B. N.; DUBOVIK, O.; REID, J. S.; SMIRNOV, A.; NEILL, N. T. O.; SLUTSKER, I.; KINNE, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research, v. 104, n. 1, 1999. https://doi.org/10.1029/1999JD900923

FONSECA, M. G.; ALVES, L. M.; AGUIAR, A. P. D.; ARAI, E.; ANDERSON, L. O.; ROSAN, T. M.; SHIMABUKURO, Y. E.; DE ARAGÃO, L. E. O. e. C. Effects of climate and land-use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Global Change Biology, v. 25, n. 9, p. 2931–2946, 2019. https://doi.org/10.1111/gcb.14709

FRAUND, M.; PHAM, D. Q.; BONANNO, D.; HARDER, T. H.; WANG, B.; BRITO, J.; DE SÁ, S. S.; CARBONE, S.; CHINA, S.; ARTAXO, P.; MARTIN, S. T.; PÖHLKER, C.; ANDREAE, M. O.; LASKIN, A.; GILLES, M. K.; MOFFET, R. C. Elemental mixing state of aerosol particles collected in central amazonia during GoAmazon2014/15. Atmosphere, v. 8, n. 9, 2017. https://doi.org/10.3390/atmos8090173

FU, R.; YIN, L.; LI, W.; ARIAS, P. A.; DICKINSON, R. E.; HUANG, L.; CHAKRABORTY, S.; FERNANDES, K.; LIEBMANN, B.; FISHER, R.; MYNENI, R. B. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proceedings of the National Academy of Sciences of the United States of America, v. 110, n. 45, p. 18110–18115, 2013. https://doi.org/10.1073/pnas.1302584110

GREGORY, G. L.; HARRISS, R. C.; TALBOT, R. W.; RASMUSSEN, R. A.; GARSTANG, M.; ANDREAE, M. O.; HINTON, R. R.; BROWELL, E. V.; BECK, S. M.; SEBACHER, D. I.; KHALIL, M. A. K.; FEREK, R. J.; HARRISS, S. V. Air chemistry over the tropical forest of Guyana. Journal of Geophysical Research, v. 91, n. D8, p. 8603, 1986. https://doi.org/10.1029/JD091iD08p08603

HOLBEN, B. N.; BUIS, J. P.; SETZER, A.; ECK, T. F.; SLUTSKER, I.; TANRE, D.; VERMOTE, E.; REAGAN, J. A.; KAUFMAN, Y. J.; NAKAJIMA, T.; LAVENU, F.; JANKOWIAK, I.; SMIRNOV, A. AERONET — A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ, v. 4257, n. 98, 1998. https://doi.org/10.1016/S0034-4257(98)00031-5

ITO, A.; MYRIOKEFALITAKIS, S.; KANAKIDOU, M.; MAHOWALD, N. M.; SCANZA, R. A.; HAMILTON, D. S.; BAKER, A. R.; JICKELLS, T.; SARIN, M.; BIKKINA, S.; GAO, Y.; SHELLEY, R. U.; BUCK, C. S.; LANDING, W. M.; BOWIE, A. R.; PERRON, M. M. G.; GUIEU, C.; MESKHIDZE, N.; JOHNSON, M. S.; FENG, Y.; KOK, J. F.; NENES, A.; DUCE, R. A. Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances, v. 5, n. 5, p. 13–15, 2019. https://doi.org/10.1126/sciadv.aau7671

ITO, A.; SHI, Z. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean. Atmospheric Chemistry and Physics, v. 16, n. 1, p. 85–99, 2016. https://doi.org/10.5194/acp-16-85-2016

JACOBSON, L. D. S. V.; HACON, S. D. S.; CASTRO, H. A. De; IGNOTTI, E.; ARTAXO, P.; SALDIVA, P. H. N.; DE LEON, A. C. M. P. Acute effects of particulate matter and black carbon from seasonal fires on peak expiratory flow of schoolchildren in the Brazilian Amazon. PLoS One, v. 9, n. 8, 2014. https://doi.org/10.1371/journal.pone.0104177

JACOBSON, M. C.; HANSSON, H. Organic Atmospheric Aerosols: Review and State of the Science. Reviews of Geophysics, n. 1998, p. 267–294, 2000. https://doi.org/10.1029/1998RG000045

KODAMA, Y. Large-scale common features of subtropical precipitation zones ( the Baiu Frontal Zone , the SPCZ , and the SACZ ) Part I: Characteristics of subtropical frontal zones. Journal of the Meteorological Society of Japan, v. 70, n. 4, p. 813–836, 1992. https://doi.org/10.2151/jmsj1965.70.4_813

LESLIE, A. C. D. Aerosol emissions from forest and grassland burnings in the southern Amazon Basin And Central Brazil. Nuclear Instruments and Methods, v. 181, n. Part XII. Aerosol applications. A. Aerosol characteristics at sources, p. 345–351, 1981. https://doi.org/10.1016/0029-554X(81)90634-0

LI, W.; XU, L.; LIU, X.; ZHANG, J.; LIN, Y.; YAO, X.; GAO, H.; ZHANG, D.; CHEN, J.; WANG, W.; HARRISON, R. M.; ZHANG, X.; SHAO, L.; FU, P.; NENES, A.; SHI, Z. Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems. Science Advances, v. 3, n. 3, p. 1–7, 2017.

MACHADO-SILVA, F.; LIBONATI, R.; MELO DE LIMA, T. F.; BITTENCOURT PEIXOTO, R.; DE ALMEIDA FRANÇA, J. R.; DE AVELAR FIGUEIREDO MAFRA MAGALHÃES, M.; LEMOS MAIA SANTOS, F.; ABRANTES RODRIGUES, J.; DACAMARA, C. C. Drought and fires influence the respiratory diseases hospitalizations in the Amazon. Ecological Indicators, v. 109, n. October 2019, p. 105817, 2020. https://doi.org/10.1016/j.ecolind.2019.105817

MAENHAUT, W.; FERNANDEZ-JIMENEZ, M.-T.; ARTAXO, P. LONG-TERM STUDY OF ATMOSPHERIC AEROSOLS IN CUIABA, BRAZIL: MULTIELEMENTAL COMPOSITION, SOURCES AND SOURCE APPORTIONMENT. Journal of Aerosol Science, v. 30, p. 259–260, 1999. https://doi.org/10.1016/S0021-8502(99)80141-4

MAENHAUT, W.; FERNANDEZ-JIMENEZ, M.-T.; RAJTA, I.; ARTAXO, P. E. Two-year study of atmospheric aerosols in Alta Floresta , Brazil : Multielemental composition and source apportionment. Nuclear Instruments and Methods in Physics Research B, v. 189, p. 243–248, 2002. https://doi.org/10.1016/S0168-583X(01)01050-3

MARENGO, J. A.; NOBRE, C. A.; CULF, A. D. Climatic impacts of “friagens” in forested and deforested areas of the Amazon basin. Journal of Applied Meteorology, v. 36, n. 11, p. 1553–1566, 1997. https://doi.org/10.1175/1520-0450(1997)036<1553:CIOFIF>2.0.CO;2

MARTINS, J. V. O efeito de partículas de aerossol de queimadas da Amazônia no balanço radiativo da atmosfera. [S. l.: s. n.], 1999. Disponível em: http://www.teses.usp.br/teses/disponiveis/43/43131/tde-20072012-121657/en.php.

MARTINS, J Vanderlei; ARTAXO, P.; LIOUSSE, C.; REID, J. S.; HOBBS, P. V; KAUFMAN, Y. J. Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. Journal of Geophysical Research, v. 103, n. 98, p. 41–50, 1998. https://doi.org/10.1029/98JD02593

MARTINS, J. Vanderlei; HOBBS, P. V.; WEISS, R. E.; ARTAXO, P. Sphericity and morphology of smoke particles from biomass burning in Brazil. Journal of Geophysical Research Atmospheres, v. 103, n. D24, p. 32051–32057, 1998. https://doi.org/10.1029/98JD01153

MOTEKI, N.; ADACHI, K.; OHATA, S.; YOSHIDA, A.; HARIGAYA, T.; KOIKE, M.; KONDO, Y. Anthropogenic iron oxide aerosols enhance atmospheric heating. Nature Communications, v. 8, n. May, p. 1–11, 2017. Disponível em: https://doi.org/10.1038/ncomms15329

NOBRE, C. A.; SAMPAIO, G.; BORMA, L. S.; CASTILLA-RUBIO, J. C.; SILVA, J. S.; CARDOSO, M. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences of the United States of America, v. 113, n. 39, p. 10759–68, 2016. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/27638214. Acesso em: 6 maio 2020. https://doi.org/10.1073/pnas.1605516113

PACIFICO, F.; FOLBERTH, G. A.; SITCH, S.; HAYWOOD, J. M.; RIZZO, L. V.; MALAVELLE, F. F.; ARTAXO, P. Biomass burning related ozone damage on vegetation over the Amazon forest: A model sensitivity study. Atmospheric Chemistry and Physics, v. 15, n. 5, p. 2791–2804, 2015. https://doi.org/10.5194/acp-15-2791-2015

PALÁCIOS, R. da S.; ROMERA, K. S.; CURADO, L. F. A.; BANGA, N. M.; ROTHMUND, L. D.; SALLO, F. da S.; MORAIS, D.; SANTOS, A. C. A.; MORAES, T. J.; MORAIS, F. G.; LANDULFO, E.; FRANCO, M. A. de M.; KUHNEN, I. A.; MARQUES, J. B.; NOGUEIRA, J. de S.; JÚNIOR, L. C. G. D. V.; RODRIGUES, T. R. Long term analysis of optical and radiative properties of aerosols in the amazon basin. Aerosol and Air Quality Research, v. 20, n. 1, p. 139–154, 2020. https://doi.org/10.4209/aaqr.2019.04.0189

PÖHLKER, C.; WIEDEMANN, K. T.; SINHA, B.; SHIRAIWA, M.; GUNTHE, S. S.; SMITH, M.; SU, H.; ARTAXO, P.; CHEN, Q.; CHENG, Y.; ELBERT, W.; GILLES, M. K.; KILCOYNE, A. L. D.; MOFFET, R. C.; WEIGAND, M.; MARTIN, S. T.; PÖSCHL, U.; ANDREAE, M. O. Biogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon. Science, v. 337, n. 6098, p. 1075–1078, 2012. https://doi.org/10.1126/science.1223264

PÖSCHL, U.; MARTIN, S. T.; SINHA, B.; CHEN, Q.; GUNTHE, S. S.; HUFFMAN, J. A.; BORRMANN, S.; FARMER, D. K.; GARLAND, R. M.; HELAS, G.; JIMENEZ, J. L.; KING, S. M.; MANZI, A.; MIKHAILOV, E.; PAULIQUEVIS, T.; PETTERS, M. D.; PRENNI, A. J.; ROLDIN, P.; ROSE, D.; SCHNEIDER, J.; SU, H.; ZORN, S. R.; ARTAXO, P.; ANDREAE, M. O. Rainforest Aerosols as Biogenic. Science, v. 1513, n. 2010, p. 1513–1517, 2010. https://doi.org/10.1126/science.1191056

PROCOPIO, A. S.; ARTAXO, P.; KAUFMAN, Y. J.; REMER, L. A.; SCHAFER, J. S.; HOLBEN, B. N. Multiyear analysis of amazonian biomass burning smoke radiative forcing of climate. Geophysical Research Letters, v. 31, n. 3, p. 1–4, 2004. https://doi.org/10.1029/2003GL018646

REID, S.; HOBBS, P. V. Physical and optical properties of young smoke from individual biomass fires in Brazil. Journal of Geophysical Research, v. 103, n. NO. D24

DECEMBER 27, p. 13–30, 1998. https://doi.org/10.1029/98JD00159

REID, S.; HOBBS, V.; VANDERLEI, J.; WEISS, E.; ECK, F. absorption and black carbon content of aerosols from biomass burning in Brazil independent of wavelength and has a mean value of _ os extinction - Os + o •. v. 103, n. 98, p. 31–32, 1998. https://doi.org/10.1029/98JD00773

REISINGER, P.; WONASCHÜTZ, A.; HITZENBERGER, R.; PETZOLD, A.; BAUER, H.; JANKOWSKI, N.; PUXBAUM, H.; CHI, X.; MAENHAUT, W. Intercomparison of measurement techniques for black or elemental carbon under urban background conditions in wintertime: Influence of biomass combustion. Environmental Science and Technology, v. 42, n. 3, p. 884–889, 2008. https://doi.org/10.1021/es0715041

RIZZO, L. V. Modelamento de propriedades físicas e químicas de aerossóis e suas interações com gases traços na Amazônia. 2002. 240 f. São Paulo: USP, 2002.

RIZZOLO, J. A.; BARBOSA, C. G. G.; BORILLO, G. C.; GODOI, A. F. L.; SOUZA, R. A. F.; ANDREOLI, R. V.; MANZI, A. O.; SÁ, M. O.; ALVES, E. G.; PÖHLKER, C.; ANGELIS, I. H.; DITAS, F.; SATURNO, J.; MORAN-ZULOAGA, D.; RIZZO, L. V.; ROSÁRIO, N. E.; PAULIQUEVIS, T.; SANTOS, R. M. N.; YAMAMOTO, C. I.; ANDREAE, M. O.; ARTAXO, P.; TAYLOR, P. E.; GODOI, R. H. M. Soluble iron nutrients in Saharan dust over the central Amazon rainforest. Atmospheric Chemistry and Physics, v. 17, n. 4, p. 2673–2687, 2017. https://doi.org/10.5194/acp-17-2673-2017

RODRIGUES, T. R.; VOURLITIS, G. L.; LOBO, F. D. A.; DE OLIVEIRA, R. G.; NOGUEIRA, J. D. S. Seasonal variation in energy balance and canopy conductance for a tropical savanna ecosystem of south central Mato Grosso, Brazil. Journal of Geophysical Research: Biogeosciences, v. 119, n. 1, p. 1–13, 2014. https://doi.org/10.1002/2013JG002472

ROSÁRIO, N. E.; YAMASOE, M. A.; BRINDLEY, H.; ECK, T. F.; SCHAFER, J. Downwelling solar irradiance in the biomass burning region of the southern Amazon: Dependence on aerosol intensive optical properties and role of water vapor. Journal of Geophysical Research Atmospheres, v. 116, n. 18, p. 1–10, 2011. https://doi.org/10.1029/2011JD015956

ROTHMUND, L. D.; PALÁCIOS, R. D. S.; MARQUES, J. B.; OLIVEIRA, L. G. B.; RODRIGUES, T. R.; CURADO, L. F. A.; NOGUEIRA, J. D. S. Characterization of physical properties of aerosols atmospheric on regions affected by burning biomass in Brazil. Holos Environment, v. 18, n. 1, p. 68, 2018. https://doi.org/10.14295/holos.v18i1.12248

RUSSELL, P. B.; BERGSTROM, R. W.; SHINOZUKA, Y.; CLARKE, A. D.; DECARLO, P. F.; JIMENEZ, J. L.; LIVINGSTON, J. M.; REDEMANN, J.; DUBOVIK, O.; STRAWA, A. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmospheric Chemistry and Physics, v. 10, n. 3, p. 1155–1169, 2010. https://doi.org/10.5194/acp-10-1155-2010

SANTANNA, F. B.; DE ALMEIDA FILHO, E. O.; VOURLITIS, G. L.; DE ARRUDA, P. H. Z.; DA SILVA PALÁCIOS, R.; DE SOUZA NOGUEIRA, J. Elemental composition of PM10 and PM2.5 for A savanna (cerrado) region of Southern Amazonia. Quimica Nova, v. 39, n. 10, p. 1170–1176, 2016. https://doi.org/10.21577/0100-4042.20160154

SANTOS, A. C. A.; FINGER, A.; DE SOUZA NOGUEIRA, J.; CURADO, L. F. A.; DA SILVA PALÁCIOS, R.; PEREIRA, V. M. R. Analysis of the concentration and composition of aerosols from fires in the Mato Grosso Wetland. Quimica Nova, v. 39, n. 8, p. 919–924, 2016. https://doi.org/10.5935/0100-4042.20160105

SCHUSTER, G. L.; DUBOVIK, O.; HOLBEN, B. N. Angstrom exponent and bimodal aerosol size distributions. Journal of Geophysical Research Atmospheres, v. 111, n. 7, p. 1–14, 2006. https://doi.org/10.1029/2005JD006328

SENA, E. T.; ARTAXO, P.; CORREIA, A. L. Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia. Atmospheric Chemistry and Physics, v. 13, n. 3, p. 1261–1275, 2013. https://doi.org/10.5194/acp-13-1261-2013

SMITH, L. T.; ARAGÃO, L. E. O. C.; SABEL, C. E.; NAKAYA, T. Drought impacts on children’s respiratory health in the Brazilian Amazon. Scientific Reports, v. 4, 2014. https://doi.org/10.1038/srep03726

URBAN, R. C.; LIMA-SOUZA, M.; CAETANO-SILVA, L.; QUEIROZ, M. E. C.; NOGUEIRA, R. F. P.; ALLEN, A. G.; CARDOSO, A. A.; HELD, G.; CAMPOS, M. L. A. M. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols. Atmospheric Environment, v. 61, p. 562–569, 2012. https://doi.org/10.1016/j.atmosenv.2012.07.082

VOURLITIS, G. L.; DE ALMEIDA LOBO, F.; LAWRENCE, S.; CODOLO DE LUCENA, I.; PINTO, O. B.; DALMAGRO, H. J.; CARMEN, E.; RODRIGUEZ, O.; DE SOUZA NOGUEIRA, J. Variations in Stand Structure and Diversity along a Soil Fertility Gradient in a Brazilian Savanna (Cerrado) in Southern Mato Grosso. Soil Science Society of America Journal, v. 77, n. 4, p. 1370–1379, 2013. https://doi.org/10.2136/sssaj2012.0336

VOURLITIS, G. L.; DE SOUZA NOGUEIRA, J.; DE ALMEIDA LOBO, F.; PINTO, O. B. Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles. International Journal of Biometeorology, v. 59, n. 2, p. 217–230, 2014. https://doi.org/10.1007/s00484-014-0837-1

WARD, D. E. Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B experiment. Journal of Geophysical Research, v. 97, n. D13, 1992. https://doi.org/10.1029/92JD01218

YAMASOE, M. A.; VON RANDOW, C.; MANZI, A. O.; SCHAFER, J. S.; ECK, T. F.; HOLBEN, B. N. Effect of smoke and clouds on the transmissivity of photosynthetically active radiation inside the canopy. Atmospheric Chemistry and Physics, v. 6, n. 6, p. 1645–1656, 2006. https://doi.org/10.5194/acp-6-1645-2006

Downloads

Publicado

2023-10-22

Como Citar

Weber, A. dos S. (2023). Impacto da queima de biomassa nas propriedades físico-químicas de aerossóis no Pantanal brasileiro. Holos Environment, 23(2), 119–142. https://doi.org/10.14295/holos.v23i2.12489

Edição

Seção

Artigos