Biomonitorização de metais pesados e entomofauna distribuição de minas de enyigba no sudeste, Nigéria

Autores

  • Cosmas Augustus Uhuo Department of Applied Biology, Ebonyi State University Abakaliki. Nigeria.
  • Monday Chukwu Nwanchor Department of Zoology, Nnamdi Azikiwe University, Nigeria.

DOI:

https://doi.org/10.14295/holos.v24i2.12499

Palavras-chave:

Metais pesados, Entomofauna, Local de mineração, Estado de Ebonyi.

Resumo

Metais pesados ​​são metais com alto peso atômico e substâncias com alta condutividade elétrica que perdem voluntariamente seus elétrons para formar cátions. O biomonitoramento de metais pesados ​​e a distribuição da entomofauna das minas de Enyigba no sudeste da Nigéria foram estudados para determinar a contaminação da base de metais pesados ​​e os riscos à saúde associados usando técnicas entomológicas padrão e espectrofotômetro de absorção atômica (AAS). Os insetos examinados foram Reticulitermes flavipes, Zonocerus elegans, Acraea acrita e Crematogaster sp coletados de locais de mineração de sal real. O estudo revelou que o índice de acumulação de Po4 (683,70 ± 677,50) foi alto, seguido por Mn, (11,00 ± 10,90) Cu, (7,600 ± 6,60) Cd, (0,350 ± 0,145) em p < 0,05. Isso é alto em comparação com os padrões do códice. Os resultados da ANOVA declararam concentração de metais pesados ​​acima dos limites permitidos com uma diferença significativa entre o local A (SA) e o local de controle (CS) em (p<0,0001). Além disso, há uma diferença significativa observada entre o local A (SA) e o local B (SB) (p<0,0001). As concentrações relativamente maiores de metais foram encontradas em Orthoptera, seguido por cupins, onde a formiga registrou a menor concentração de metais. O estudo revelou ainda que valores notáveis ​​foram registrados no local de controle (CS) (32944), seguido por (SB) (20904), enquanto SA registrou o menor valor (6644). No entanto, a baixa diversidade e abundância de espécies em diferentes locais é uma indicação dos impactos do acúmulo de metais pesados ​​nos locais. No entanto, o acúmulo de PO4 nos insetos, especialmente nos locais A e B, mostrou que os efeitos da mineração na geração de PO4 são altos e podem representar risco à saúde humana se não forem mitigados. No entanto, a estação chuvosa registrou maior abundância em comparação à estação seca em Reticulitermes flavipes, seguido por Crematogaster sp. enquanto Acraea acrita registrou a menor abundância.

Referências

AKHILA, A.; KESHAMMA, E. Recent perspectives on ants as bioindicators: A review. Journal of Entomology and Zoology Studies, v. 10, n. 3, p. 11–14, 2022. https://doi.org/10.22271/j.ento.2022.v10.i3a.9005

ALAJMI, R.; ABDEL-GABER, R.; ALOTAIBI, N.Characterization of the 12S rRNA gene sequences of the harvester termite Anacanthotermes ochraceus (Blattodea: Hodotermitidae) and its role as A bioindicator of heavy metal accumulation risks in Saudi arabia. Insects, v. 10, n. 2, p. 51, 2019. https://doi.org/10.3390/insects10020051

ANDERSEN, A. N.; HOFFMANN, B. D.; MULLER, W. J.; GRIFFITHS, A. D. Using ants as bioindicators in land management: Simplifying assessment of ant community responses. Journal of Applied Ecology, v. 39, p. 8–17, 2022. https://doi.org/10.1046/j.1365-2664.2002.00704.x

AZAM, I.; AFSHEEN, S.; ZIA, M.; JAVED, R.; SAEED, M.; KALEEM, S. et al. Evaluating insects as bioindicators of heavy metal contamination and accumulation near industrial area of Gujrat, Pakistan. BioMed Research International, p. 1–11, 2015. https://doi.org/10.1155/2015/942751

CHAPMAN, A.D. Numbers of living species in Australia and the World. Canberra: Australian Biological Resources Study, 2006.

DA ROCHA, J. R. M.; DE ALMEIDA, J. R., LINS, G. A.; DURVAL, A. Insects as indicators of environmental changing and pollution: A review of appropriate species and their monitoring. Holos environment, v. 10, n. 2, p. 250–262, 2010. https://doi.org/10.14295/holos.v10i2.2996

DAVID, T. Bio-indicator in air pollution research. Application and constraints biologic markers of air pollution stress and damage in forests. Washington, DC: Nation Academics Press, p. 73–80, 1989.

DE GROOT, R.S., WILSON. M.A.; BOUMANS, R.M.J. A Typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41, p. 393-408, 2002. https://doi.org/10.1016/S0921-8009(02)00089-7

DUFFUS, J.H. Heavy metals" a meaningless term? (IUPAC Technical Report), 2002. https://doi.org/10.1351/pac200274050793

DURAN-BAUTISTA, E. H.; ARMBRECHT, I.; ACIOLI, A. N. S.; SUÁREZ, J. C. ; ROMERO, M.; QUINTERO, M. et al. Termites as indicators of soil ecosystem services in transformed amazon landscapes. Ecological Indicators, 117, p. 106550, 2020. https://doi.org/10.1016/j.ecolind.2020.106550

ERWIN, T.L. Tropical forests: their richness in Coleoptera and other arthropod species. The Coleopterists Bulletin, v. 36, p. 74–75, 1982.

ERWIN, T.L. Biodiversity at its utmost: tropical Forest Beetles, p. 27–40, 1997.

FELDHAAR, H.; OTTI, O. Pollutants and their interaction with diseases of social Hymenoptera. Insects, v.11, n. 3, p. 153, 2020. https://doi.org/10.3390/insects11030153

FINCHER, G.T.; MONSON, W.G.; BURTON G.W. Effects of cattle faeces rapidly buried by dung beetles on yield and quality of Coastal Bermudagrass. Agronomy Journal, 73, p. 775-779, 1981. https://doi.org/10.2134/agronj1981.00021962007300050007x

FISHER, B.L. Insect behavior and ecology in conservation: preserving functional species interactions. Annals of the Entomological Society of America, v. 91, p.155– 158, 1998. https://doi.org/10.1093/aesa/91.2.155

GRAMIGNI, E.; CALUSI, S.; GELLI, N.; GIUNTINI, L.; MASSI, M.; DELFINO, G. et al. Ants as bioaccumulators of metals from soil: Body content and tissue-specific distribution of metals in the ant, Crematogaster scutellaris. European Journal of Soil Biology, v. 58, p. 24–31, 2013. https://doi.org/10.1016/j.ejsobi.2013.05.006

HONNAY, O. Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecology Letters, v. 5, p. 525–530, 2002. https://doi.org/10.1046/j.1461-0248.2002.00346.x

KASPARI, M.; MAJER, J. D. (2000). Using ants to monitor environmental changes. In: D. AGOSTI, D. ; MAJER, J. ALONSO, E.; SCHULTZ, T. Ants: standard methods for measuring and monitoring biodiversity. biological diversity handbook series. Washington, DC: Smithsonian Institution Press), 2000. Available at: http://hdl.handle.net/20.500.11937/32656.

KEMP, D.D. The environment dictionary. London; New York, Routledge, 1998.

LENOIR, A. ; TOUCHARD, A.; DEVERS, S.; CHRISTIDES, J. P.; BOULAY, R.; CUVILLIER HOT, V. Ant cuticular response to phthalate pollution. Environmental Science and Pollution Research, v. 21, n. 23, p. 13446–13451, 2014. https://doi.org/10.1007/s11356-014-3272-2

Li H. M. Studies on the physiological function and pharmacological properties of Bd Octβ1R and Bd Octβ2R in Bactrocera dorsalis (Hendel). Dissertation for Master’s, Southwest University, Chongqing, 2017.

MA (Millennium Assessment). Millennium Ecosystem Assessment, 2005.

MAJER, J. D. Ants: Bio-indicators of mine site rehabilitation, land-use, and land conservation. Environmental Management, v. 7, n. 4, p. 375–383, 1983. https://doi.org/10.1007/BF01866920

MAJER, J. D. Ants: Bio-indicators of mine site rehabilitation, land-use, and land conservation. Environmental Management, v. 7, n. 4, p. 375–383, 1983. https://doi.org/10.1007/BF01866920

NICHOLS, E.; SPECTOR, S.; LOUZADA, J.; LARSEN, T.; AMEZQUITA, S. ; FAVILA, M.E. Ecological Functions and Ecosystem Services Provided by Scarabaeinae Dung Beetles. Biological Conservation, v. 141, p. 1461-1474, 2008. https://doi.org/10.1016/j.biocon.2008.04.011

NITHYATHARANI, R.; KAVITHA, U. S. Termite soil as bio-indicator of soil fertility. Technol. International Journal for Research in Applied Science and Engineering Technology, v. 6, n.1, p. 659–661, 2018. https://doi.org/10.22214/ijraset.2018.1099

PORRINI, C.; SABATINI, A. G.; GIROTTI, S.; GHINI, S.; MEDRZYCKI, P.; GRILLENZONI, F. et al. Honey bees and bee products as monitors of the environmental contamination. Apiacta, v. 38, p. 63–70, 2003

RATCLIFFE, D.A. Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some british birds. The Journal of Applied Ecology, v. 7, n. 1, p. 67, 1970. https://doi.org/10.2307/2401613

SHARMA, M.; SHARMA, N. Suitability of butterflies as indicators of ecosystem condition: a comparison of butterfly diversity across four habitats in gir wildlife sanctuary. International Journal of Advanced Research in Biological Sciences, v. 4, p. 2348–8069, 2017.

SKALDINA, O., PERANIEMI, S.; SORVARI, J. Ants and their nests as indicators for industrial heavy metal contamination. Environmental Pollution, v. 240, p. 574–581, 2018. https://doi.org/10.1016/j.envpol.2018.04.134

TIBCHERANI, M.; NACAGAVA, V.; ARANDA, R.; MELLO, R. L. Review of ants (hymenoptera: Formicidae) as bioindicators in the Brazilian savanna. Sociobiology, v. 65, n. 2, p. 112–129, 2018. https://doi.org/10.13102/sociobiology.v65i2.2048

UNDERWOOD, E. C.; FISHER, B. L. The role of ants in conservation monitoring: If, when, and how. Biological Conservation, v. 132, p. 166–182, 2006. https://doi.org/10.1016/j.biocon.2006.03.022

WANG Y.; CAMPBELL J. B.; KAFTANOGLU O.; PAGE R. E., JR.; AMDAM G. V.; HARRISON J. F. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.). Journal of Experimental Biology, v. 219, p. 960–968, 2016a. https://doi.org/10.1242/jeb.136374

Downloads

Publicado

2025-01-29

Como Citar

Uhuo, C. A., & Nwanchor, M. C. (2025). Biomonitorização de metais pesados e entomofauna distribuição de minas de enyigba no sudeste, Nigéria. Holos Environment, 24(2), 76–89. https://doi.org/10.14295/holos.v24i2.12499

Edição

Seção

Artigos